


Ex 13.1 (Term 1)
Ex 13.1, 2
Ex 13.1, 3
Ex 13.1, 4 Important
Ex 13.1, 5
Ex 13.1, 6 Important You are here
Ex 13.1, 7
Ex 13.1, 8 Important
Ex 13.1, 9
Ex 13.1,10 Important
Ex 13.1, 11
Ex 13.1, 12
Ex 13.1, 13
Ex 13.1, 14 Important
Ex 13.1, 15 Important
Ex 13.1, 16
Ex 13.1, 17 Important
Ex 13.1, 18
Ex 13.1, 19 Important
Ex 13.1, 20
Ex 13.1, 21 Important
Ex 13.1, 22 Important
Ex 13.1, 23
Ex 13.1, 24
Ex 13.1, 25 Important
Ex 13.1, 26
Ex 13.1, 27
Ex 13.1, 28 Important
Ex 13.1, 29
Ex 13.1, 30 Important
Ex 13.1, 31
Ex 13.1, 32 Important
Last updated at Nov. 30, 2019 by Teachoo
Ex 13.1, 6 Evaluate the Given limit: lim┬(x→0) ((x +1)5 −1)/x lim┬(x→0) ((x + 1)5 − 1)/x = ((0 + 1)5 −1)/0 = (15 − 1)/0 = (1 − 1)/0 = 0/0 Since it is of from 0/0 Hence, we simplify lim┬(x→0) ((x +1)5 −1)/x Putting y = x + 1 ⇒ x = y – 1 As x → 0 y → 0 + 1 y → 1 Our equation becomes lim┬(x→0) ((x +1)5 −1)/x = lim┬(y→1) (𝑦5 − 1)/(y − 1) = (𝐥𝐢𝐦)┬(𝐲→𝟏) (𝒚𝟓 − 𝟏^𝟓)/(𝐲 − 𝟏) = lim┬(y→1) (y5−15)/(y−1) = 5 × 15-1 = 5 × 14 = 5 ∴ lim┬(x→0) ((x + 1)5 − 1)/x = 5 We know that (𝑙𝑖𝑚)┬(𝑥→𝑎) ( 𝑥^𝑛 − 𝑎^𝑛)/(𝑥 − 𝑎) = nan – 1 Comparing (𝑙𝑖𝑚)┬(𝑦→1) ( 𝑦^5 − 1^5)/(𝑦 − 1) Here x = y , n = 5 , a = 1