
Ex 13.1 (Term 1)
Ex 13.1, 2
Ex 13.1, 3
Ex 13.1, 4 Important
Ex 13.1, 5
Ex 13.1, 6 Important
Ex 13.1, 7
Ex 13.1, 8 Important
Ex 13.1, 9
Ex 13.1,10 Important
Ex 13.1, 11
Ex 13.1, 12
Ex 13.1, 13
Ex 13.1, 14 Important
Ex 13.1, 15 Important
Ex 13.1, 16
Ex 13.1, 17 Important
Ex 13.1, 18
Ex 13.1, 19 Important
Ex 13.1, 20
Ex 13.1, 21 Important
Ex 13.1, 22 Important
Ex 13.1, 23
Ex 13.1, 24
Ex 13.1, 25 Important
Ex 13.1, 26
Ex 13.1, 27
Ex 13.1, 28 Important
Ex 13.1, 29 You are here
Ex 13.1, 30 Important
Ex 13.1, 31
Ex 13.1, 32 Important
Last updated at Sept. 6, 2021 by Teachoo
Ex 13.1, 29 Let a1, a2,….., an be fixed real numbers and define a function f(x) = (x – a1) (x – a2)…. (x – an) What is lim┬(x→a"1" ) f(x)? For some a ≠ a1, a2…… an, compute lim┬(x→a) f(x). f(x) = (x – a1) (x – a2) …….(x – an) Calculating (𝐥𝐢𝐦)┬(𝐱→𝐚"1" ) f(x) lim┬(x→a"1" ) f(x) = lim┬(x→a"1" ) (x – a1) (x – a2)….. (x – an) Putting x = a1 = (a1 – a1) (a1 – a2) …..(a1 – an) = 0 × (a1 – a2) …… (a1 – an) = 0 Hence, (𝐥𝐢𝐦)┬(𝐱→𝐚"1" ) f (x) = 0 Calculating (𝐥𝐢𝐦)┬(𝐱→𝐚) f(x) lim┬(x→a) f(x) = lim┬(x→a) (x – a1) (x – a2) …….(x – an) Putting x = a = (a – a1) (a – a2) …… (a – an) Hence (𝐥𝐢𝐦)┬(𝐱→𝐚) f(x) = (a – a1) (a – a2) ….. (a – an)