Ex 13.1 (Term 1)

Ex 13.1, 1

Ex 13.1, 2

Ex 13.1, 3

Ex 13.1, 4 Important

Ex 13.1, 5

Ex 13.1, 6 Important

Ex 13.1, 7

Ex 13.1, 8 Important

Ex 13.1, 9

Ex 13.1,10 Important

Ex 13.1, 11

Ex 13.1, 12

Ex 13.1, 13

Ex 13.1, 14 Important

Ex 13.1, 15 Important

Ex 13.1, 16

Ex 13.1, 17 Important

Ex 13.1, 18

Ex 13.1, 19 Important

Ex 13.1, 20

Ex 13.1, 21 Important

Ex 13.1, 22 Important

Ex 13.1, 23

Ex 13.1, 24

Ex 13.1, 25 Important

Ex 13.1, 26

Ex 13.1, 27

Ex 13.1, 28 Important

Ex 13.1, 29 You are here

Ex 13.1, 30 Important

Ex 13.1, 31

Ex 13.1, 32 Important

Chapter 13 Class 11 Limits and Derivatives (Term 1 and Term 2)

Serial order wise

Last updated at Sept. 6, 2021 by Teachoo

Ex 13.1, 29 Let a1, a2,….., an be fixed real numbers and define a function f(x) = (x – a1) (x – a2)…. (x – an) What is lim┬(x→a"1" ) f(x)? For some a ≠ a1, a2…… an, compute lim┬(x→a) f(x). f(x) = (x – a1) (x – a2) …….(x – an) Calculating (𝐥𝐢𝐦)┬(𝐱→𝐚"1" ) f(x) lim┬(x→a"1" ) f(x) = lim┬(x→a"1" ) (x – a1) (x – a2)….. (x – an) Putting x = a1 = (a1 – a1) (a1 – a2) …..(a1 – an) = 0 × (a1 – a2) …… (a1 – an) = 0 Hence, (𝐥𝐢𝐦)┬(𝐱→𝐚"1" ) f (x) = 0 Calculating (𝐥𝐢𝐦)┬(𝐱→𝐚) f(x) lim┬(x→a) f(x) = lim┬(x→a) (x – a1) (x – a2) …….(x – an) Putting x = a = (a – a1) (a – a2) …… (a – an) Hence (𝐥𝐢𝐦)┬(𝐱→𝐚) f(x) = (a – a1) (a – a2) ….. (a – an)