
Ex 13.1 (Term 1)
Ex 13.1, 2
Ex 13.1, 3
Ex 13.1, 4 Important
Ex 13.1, 5
Ex 13.1, 6 Important
Ex 13.1, 7
Ex 13.1, 8 Important
Ex 13.1, 9
Ex 13.1,10 Important
Ex 13.1, 11
Ex 13.1, 12
Ex 13.1, 13
Ex 13.1, 14 Important
Ex 13.1, 15 Important
Ex 13.1, 16
Ex 13.1, 17 Important
Ex 13.1, 18
Ex 13.1, 19 Important
Ex 13.1, 20
Ex 13.1, 21 Important
Ex 13.1, 22 Important
Ex 13.1, 23
Ex 13.1, 24
Ex 13.1, 25 Important
Ex 13.1, 26
Ex 13.1, 27
Ex 13.1, 28 Important
Ex 13.1, 29
Ex 13.1, 30 Important
Ex 13.1, 31 You are here
Ex 13.1, 32 Important
Last updated at Sept. 6, 2021 by Teachoo
Ex 13.1, 31 If the function f(x) satisfies limβ¬(x β 1) (π(π₯) β 2)/(π₯2 β 1) = Ο , evaluate limβ¬(xβ1) f(x) . Given limβ¬(xβ1) (π(π₯) β 2)/(π₯^2 β 1) = Ο (limβ¬(xβ1) π(π₯) β 2)/(limβ¬(xβ1) γ(π₯γ^2 β 1) ) = Ο limβ¬(xβ1) (f(x) β 2) = Ο Γ limβ¬(xβ1) (x2 β 1) limβ¬(xβ1) f(x) β limβ¬(xβ1) 2 = Ο (limβ¬(xβ1) x2 β limβ¬(xβ1) 1) By Algebra of limits (πππ)β¬(π₯βπ) (π(π₯))/(π(π₯)) = ((πππ)β¬(π₯βπ) π(π₯))/((πππ)β¬(π₯βπ) π(π₯)) (limβ¬(xβ1) π(π₯) β 2)/(limβ¬(xβ1) γ(π₯γ^2 β 1) ) = Ο limβ¬(xβ1) (f(x) β 2) = Ο Γ limβ¬(xβ1) (x2 β 1) limβ¬(xβ1) f(x) β limβ¬(xβ1) 2 = Ο (limβ¬(xβ1) x2 β limβ¬(xβ1) 1) Finding limits, putting x = 1 limβ¬(xβ1) f(x) β 2 = Ο Γ ((1)2 β 1) limβ¬(xβ1) f(x) β 2 = Ο Γ 0 limβ¬(xβ1) f(x) β 2 = Ο Γ 0 limβ¬(xβ1) f(x) β 2 = 0 limβ¬(xβ1) f(x) = 2 Thus (πππ)β¬(π±βπ) f (x) = 2