

Subscribe to our Youtube Channel - https://you.tube/teachoo
Last updated at Nov. 30, 2019 by Teachoo
Transcript
Ex 13.1, 22 lim┬(x → π/2) tan2x/(x − π/2) lim┬(x → π/2) tan2x/(x − π/2) Putting y = x – π/2 When x → 𝜋/2 y → 𝜋/2 – 𝜋/2 y → 0 So, our equation becomes lim┬(x→π/2) tan2x/(x − π/2) = lim┬(y→0) (tan2(𝜋/2 + 𝑦)/𝑦) = lim┬(y→0) ((〖tan 〗〖(𝜋 + 2𝑦〗))/𝑦) = lim┬(y→0) (tan2𝑦/𝑦) = lim┬(y→0) (1/𝑦 . sin2𝑦/cos2𝑦 ) = lim┬(y→0) (sin2𝑦/𝑦 . 1/cos2𝑦 ) = lim┬(y→0) sin2𝑦/𝑦 ×lim┬(y→0) 1/cos2𝑦 Multiply & Divide by 2 (As tan〖(𝜋+𝑥〗)=tan x) = lim┬(y→0) (sin2𝑦/𝑦 "× " 2/2).lim┬(y→0) 1/cos2𝑦 = 2 lim┬(y→0) (𝒔𝒊𝒏𝟐𝒚/𝟐𝒚).lim┬(y→0) 1/cos2𝑦 Using ( lim)┬(x→0) (sinx )/x = 1 Replacing x by 2y. lim┬(x→0) sin2𝑦/2y = 1 = 2 × 1 × lim┬(y→0) 1/cos2𝑦 = 2 × 1/cos〖2(0)〗 = 2/cos0 = 2/1 = 2 (As cos 0 = 1)
Ex 13.1
Ex 13.1, 2
Ex 13.1, 3
Ex 13.1, 4
Ex 13.1, 5
Ex 13.1, 6 Important
Ex 13.1, 7
Ex 13.1, 8 Important
Ex 13.1, 9
Ex 13.1,10 Important
Ex 13.1, 11
Ex 13.1, 12
Ex 13.1, 13
Ex 13.1, 14 Important
Ex 13.1, 15 Important
Ex 13.1, 16
Ex 13.1, 17
Ex 13.1, 18
Ex 13.1, 19
Ex 13.1, 20
Ex 13.1, 21 Important
Ex 13.1, 22 Important You are here
Ex 13.1, 23
Ex 13.1, 24
Ex 13.1, 25 Important
Ex 13.1, 26
Ex 13.1, 27
Ex 13.1, 28 Important
Ex 13.1, 29 Important
Ex 13.1, 30 Important
Ex 13.1, 31 Important
Ex 13.1, 32 Important
About the Author