Solve all your doubts with Teachoo Black (new monthly pack available now!)

Ex 13.1

Ex 13.1, 1

Ex 13.1, 2

Ex 13.1, 3

Ex 13.1, 4 Important

Ex 13.1, 5

Ex 13.1, 6 Important

Ex 13.1, 7

Ex 13.1, 8 Important

Ex 13.1, 9

Ex 13.1,10 Important

Ex 13.1, 11

Ex 13.1, 12

Ex 13.1, 13

Ex 13.1, 14 Important

Ex 13.1, 15 Important

Ex 13.1, 16

Ex 13.1, 17 Important

Ex 13.1, 18

Ex 13.1, 19 Important

Ex 13.1, 20

Ex 13.1, 21 Important

Ex 13.1, 22 Important You are here

Ex 13.1, 23

Ex 13.1, 24

Ex 13.1, 25 Important

Ex 13.1, 26

Ex 13.1, 27

Ex 13.1, 28 Important

Ex 13.1, 29

Ex 13.1, 30 Important

Ex 13.1, 31

Ex 13.1, 32 Important

Last updated at Nov. 30, 2019 by Teachoo

Ex 13.1, 22 lim┬(x → π/2) tan2x/(x − π/2) lim┬(x → π/2) tan2x/(x − π/2) Putting y = x – π/2 When x → 𝜋/2 y → 𝜋/2 – 𝜋/2 y → 0 So, our equation becomes lim┬(x→π/2) tan2x/(x − π/2) = lim┬(y→0) (tan2(𝜋/2 + 𝑦)/𝑦) = lim┬(y→0) ((〖tan 〗〖(𝜋 + 2𝑦〗))/𝑦) = lim┬(y→0) (tan2𝑦/𝑦) = lim┬(y→0) (1/𝑦 . sin2𝑦/cos2𝑦 ) = lim┬(y→0) (sin2𝑦/𝑦 . 1/cos2𝑦 ) = lim┬(y→0) sin2𝑦/𝑦 ×lim┬(y→0) 1/cos2𝑦 Multiply & Divide by 2 (As tan〖(𝜋+𝑥〗)=tan x) = lim┬(y→0) (sin2𝑦/𝑦 "× " 2/2).lim┬(y→0) 1/cos2𝑦 = 2 lim┬(y→0) (𝒔𝒊𝒏𝟐𝒚/𝟐𝒚).lim┬(y→0) 1/cos2𝑦 Using ( lim)┬(x→0) (sinx )/x = 1 Replacing x by 2y. lim┬(x→0) sin2𝑦/2y = 1 = 2 × 1 × lim┬(y→0) 1/cos2𝑦 = 2 × 1/cos〖2(0)〗 = 2/cos0 = 2/1 = 2 (As cos 0 = 1)