

Get live Maths 1-on-1 Classs - Class 6 to 12
Ex 13.1
Ex 13.1, 2
Ex 13.1, 3
Ex 13.1, 4 Important
Ex 13.1, 5
Ex 13.1, 6 Important
Ex 13.1, 7
Ex 13.1, 8 Important
Ex 13.1, 9
Ex 13.1,10 Important
Ex 13.1, 11
Ex 13.1, 12
Ex 13.1, 13
Ex 13.1, 14 Important
Ex 13.1, 15 Important
Ex 13.1, 16
Ex 13.1, 17 Important You are here
Ex 13.1, 18
Ex 13.1, 19 Important
Ex 13.1, 20
Ex 13.1, 21 Important
Ex 13.1, 22 Important
Ex 13.1, 23
Ex 13.1, 24
Ex 13.1, 25 Important
Ex 13.1, 26
Ex 13.1, 27
Ex 13.1, 28 Important
Ex 13.1, 29
Ex 13.1, 30 Important
Ex 13.1, 31
Ex 13.1, 32 Important
Last updated at March 22, 2023 by Teachoo
Ex 13.1, 17 Evaluate the Given limit: lim┬(x→0) cos〖2x − 1〗/cos〖x − 1〗 lim┬(x→0) ( 𝐜𝐨𝐬〖𝟐𝐱 〗− 1)/cos〖x − 1〗 = lim┬(x→0) ((𝟏 − 𝟐 〖𝐬𝐢𝐧^𝟐〗𝒙) − 1)/cos〖𝑥 − 1〗 = lim┬(x→0) (1 − 2 〖𝐬𝐢𝐧^𝟐〗𝒙 − 1 )/cos〖x − 1〗 = lim┬(x→0) (−2 𝐬𝐢𝐧𝟐 𝐱 )/cos〖x − 1〗 = lim┬(x→0) (−2(𝟏 − 𝐜𝐨𝐬^𝟐 𝒙))/cos〖x − 1〗 = lim┬(x→0) (−2(1 − 𝐜𝐨𝐬^𝟐 𝒙) )/(−1(1−〖 cos〗〖𝑥)〗 ) (Using cos 2x = 1 – 2sin2 x) (Using sin2 x = 1 – cos2 x ) = lim┬(x→0) ( 2 (12 − cos2 x) )/( 1−〖 cos〗𝑥 ) = lim┬(x→0) ( 2 (1 − cos x)(1 +〖 cos〗〖𝑥)〗 )/( 1−〖 cos〗𝑥 ) = lim┬(x→0) 2 (1 + cos x) Putting x = 0 = 2 (1 + cos 0) = 2 (1 + 1) = 2 × 2 = 4