Ex 13.1, 25 - Evaluate lim x->0 f(x), f(x) = { |x|/x, 0 - Ex 13.1

Slide55.JPG

Slide56.JPG Slide57.JPG Slide58.JPG Slide59.JPG

  1. Chapter 13 Class 11 Limits and Derivatives
  2. Serial order wise
Ask Download

Transcript

Ex 13.1, 25 (Method 1) Evaluate lim x 0 f(x), where f(x) = x x 0, , x 0 x=0 Finding limit at x = 0 lim x 0 f(x) = lim x 0 + f(x) = lim x 0 f(x) Thus, lim x 0 f(x) = 1 & lim x 0 + f(x) = 1 Since 1 1 So, f(x) + f(x) So, left hand limit & right hand limit are not equal Hence, f(x) does not exist Ex13.1, 25 (Method 2) Evaluate lim x 0 f(x), where f(x) = x x 0, , x 0 x=0 We know that lim x a f(x) exist only if lim x f(x) = lim x + f(x) Similarly in this question we have find limits First we have to prove limit exists by proving lim x 0 f(x) = lim x 0 + f(x) For f(x) f(x) = x x So, as x tends to 0, f(x) tends to 1 0 f(x) = 1 For + f(x) f(x) = x x So, as x tends to 0, f(x) tends to 1 0 + f(x) = 1 Thus, lim x 0 f(x) = 1 & lim x 0 + f(x) = 1 Since 1 1 So, lim x 0 f(x) lim x 0 + f(x) So, left hand limit & right hand limit are not equal Hence, f(x) does not exist

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 8 years. He provides courses for Maths and Science at Teachoo. You can check his NCERT Solutions from Class 6 to 12.