Ex 12.1

Ex 12.1, 1

Ex 12.1, 2

Ex 12.1, 3

Ex 12.1, 4 Important

Ex 12.1, 5

Ex 12.1, 6 Important

Ex 12.1, 7

Ex 12.1, 8 Important You are here

Ex 12.1, 9

Ex 12.1,10 Important

Ex 12.1, 11

Ex 12.1, 12

Ex 12.1, 13

Ex 12.1, 14 Important

Ex 12.1, 15 Important

Ex 12.1, 16

Ex 12.1, 17 Important

Ex 12.1, 18

Ex 12.1, 19 Important

Ex 12.1, 20

Ex 12.1, 21 Important

Ex 12.1, 22 Important

Ex 12.1, 23

Ex 12.1, 24

Ex 12.1, 25 Important

Ex 12.1, 26

Ex 12.1, 27

Ex 12.1, 28 Important

Ex 12.1, 29

Ex 12.1, 30 Important

Ex 12.1, 31

Ex 12.1, 32 Important

Last updated at May 7, 2024 by Teachoo

Ex 12.1, 8 Evaluate the Given limit: lim┬(x→3) (x4 −81)/(2x2 −5x−3) lim┬(x→3) (x4 − 81)/(2x2 − 5x − 3) Putting x = 3 = ((3)4 − 81)/(2 (3)2 − 5 (3) − 3) = (81 − 81)/(18 − 15 − 3) = 0/0 Since it is a 0/0 form we simplify as lim┬(x→3) (x4 − 81)/(2x2 − 5x − 3) = lim┬(x→3) (〖(𝑥2)〗^2 − 〖(9)〗^2)/(2x2 − 6x + x − 3) = lim┬(x→3) ((x2 − 9) (x2 + 9))/(2x (x − 3) + 1 (x − 3)) = lim┬(x→3) ((𝑥2− (3)2) (𝑥2 + 9))/((x + 1)(𝑥 − 3)) = lim┬(x→3) ((𝑥 − 3) (𝑥 + 3)(𝑥2 + 9))/((2𝑥 + 1) (𝑥 − 3)) = (𝐥𝐢𝐦)┬(𝐱→𝟑) ((𝒙 + 𝟑) (𝒙𝟐 + 𝟗))/(𝟐𝒙 + 𝟏) (Using a2 – b2 = (a – b) (a + b)) (Using a2 – b2 = (a – b) (a + b)) 𝑃𝑢𝑡𝑡𝑖𝑛𝑔 𝑥=3 = ((3 + 3)((3)2 + 9))/(2 ×3 +1) = (6 (9 + 9))/(6 + 1) = (6(18))/7 = 𝟏𝟎𝟖/𝟕