# Ex 13.1, 28 - Chapter 13 Class 11 Limits and Derivatives (Term 1 and Term 2)

Last updated at Nov. 30, 2019 by Teachoo

Ex 13.1 (Term 1)

Ex 13.1, 1

Ex 13.1, 2

Ex 13.1, 3

Ex 13.1, 4 Important

Ex 13.1, 5

Ex 13.1, 6 Important

Ex 13.1, 7

Ex 13.1, 8 Important

Ex 13.1, 9

Ex 13.1,10 Important

Ex 13.1, 11

Ex 13.1, 12

Ex 13.1, 13

Ex 13.1, 14 Important

Ex 13.1, 15 Important

Ex 13.1, 16

Ex 13.1, 17 Important

Ex 13.1, 18

Ex 13.1, 19 Important

Ex 13.1, 20

Ex 13.1, 21 Important

Ex 13.1, 22 Important

Ex 13.1, 23

Ex 13.1, 24

Ex 13.1, 25 Important

Ex 13.1, 26

Ex 13.1, 27

Ex 13.1, 28 Important You are here

Ex 13.1, 29

Ex 13.1, 30 Important

Ex 13.1, 31

Ex 13.1, 32 Important

Chapter 13 Class 11 Limits and Derivatives (Term 1 and Term 2)

Serial order wise

Last updated at Nov. 30, 2019 by Teachoo

Ex 13.1, 28 Suppose f(x) = {█(a+bx, x<1@4, x=1@b−ax, x>1)┤ and if lim┬(x→1) f(x) = f(1) what are possible values of a and b? Here, limit exist at x → 1 i.e., LHL = RHL = f(1) = 4 LHL at x → 1 lim┬(x→1^− ) f(x) = lim┬(h→0) f(1 − h) = lim┬(h→0) a + b (1 − h) = a + b (1 − 0) = a + b RHL at x → 1 lim┬(x→1^+ ) f(x) = lim┬(h→0) f(1 + h) = lim┬(h→0) b − a (1 + h) = b − a (1 + 0) = b − a From (1) and (2) a + b = 4 From (1) and (3) b − a = 4 Adding both a + b + b − a = 4 + 4 2b = 8 b = 4 Also, a + b = 4 a + 4 = 4 a = 0