Solve all your doubts with Teachoo Black (new monthly pack available now!)

Ex 13.1

Ex 13.1, 1

Ex 13.1, 2

Ex 13.1, 3

Ex 13.1, 4 Important

Ex 13.1, 5

Ex 13.1, 6 Important

Ex 13.1, 7

Ex 13.1, 8 Important

Ex 13.1, 9

Ex 13.1,10 Important You are here

Ex 13.1, 11

Ex 13.1, 12

Ex 13.1, 13

Ex 13.1, 14 Important

Ex 13.1, 15 Important

Ex 13.1, 16

Ex 13.1, 17 Important

Ex 13.1, 18

Ex 13.1, 19 Important

Ex 13.1, 20

Ex 13.1, 21 Important

Ex 13.1, 22 Important

Ex 13.1, 23

Ex 13.1, 24

Ex 13.1, 25 Important

Ex 13.1, 26

Ex 13.1, 27

Ex 13.1, 28 Important

Ex 13.1, 29

Ex 13.1, 30 Important

Ex 13.1, 31

Ex 13.1, 32 Important

Last updated at Nov. 30, 2019 by Teachoo

Ex 13.1, 10 Evaluate the Given limit: limβ¬(zβ1) (π§^(1/3) β 1)/(π§^(1/6) β 1) limβ¬(zβ1) (π§^(1/3) β 1)/(π§^(1/6) β 1) = (γ(1)γ^(1/3) β 1)/(γ(1)γ^(1/6) β 1) = (1 β 1)/(1 β 1) = 0/0 Since it is form 0/0, We can solve it by using (πππ)β¬(π₯βπ) (π₯^π β π^π)/(π₯ β π) = nan β 1 Hence, limβ¬(zβ1) (π§^(1/3) β 1)/(π§^(1/6) β 1) = limβ¬(zβ1) π§^(1/3) β 1 Γ· limβ¬(zβ1) π§^(1/6) β 1 = limβ¬(zβ1) π§^(1/3) β γ(1)γ^(1/3) Γ· limβ¬(zβ1) π§^(1/6) β γ(1)γ^(1/6) Multiplying and dividing by z β 1 = limβ¬(zβ1) (π§^(1/3) β γ(1)γ^(1/3))/(π§ β 1) Γ· limβ¬(zβ1) (π§^(1/6) βγ (1)γ^(1/6))/(π§ β 1) Using (πππ)β¬(π₯βπ) ( π₯^π β π^π)/(π₯ β π) = nan β 1 limβ¬(zβ1) (π§^(1/3) β γ(1)γ^(1/3))/(π§ β1) = 1/3 γ(1)γ^(1/3 β 1) = 1/3 Γ 1 = 1/3 limβ¬(zβ1) (π§^(1/6) β γ(1)γ^(1/6))/(π§ β1) = 1/6 γ(1)γ^(1/6 β 1) = 1/6 Γ 1 = 1/6 Hence our equation becomes = limβ¬(zβ1) (π§^(1/3) β γ(1)γ^(1/3))/(π§ β 1) Γ· limβ¬(zβ1) (π§^(1/6) β 6)/(π§ β 1) = 1/3 Γ·1/6 = 1/3 Γ 6/1 = 2