


Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 12.1
Ex 12.1, 2
Ex 12.1, 3
Ex 12.1, 4 Important
Ex 12.1, 5
Ex 12.1, 6 Important
Ex 12.1, 7
Ex 12.1, 8 Important
Ex 12.1, 9
Ex 12.1,10 Important You are here
Ex 12.1, 11
Ex 12.1, 12
Ex 12.1, 13
Ex 12.1, 14 Important
Ex 12.1, 15 Important
Ex 12.1, 16
Ex 12.1, 17 Important
Ex 12.1, 18
Ex 12.1, 19 Important
Ex 12.1, 20
Ex 12.1, 21 Important
Ex 12.1, 22 Important
Ex 12.1, 23
Ex 12.1, 24
Ex 12.1, 25 Important
Ex 12.1, 26
Ex 12.1, 27
Ex 12.1, 28 Important
Ex 12.1, 29
Ex 12.1, 30 Important
Ex 12.1, 31
Ex 12.1, 32 Important
Last updated at May 29, 2023 by Teachoo
Ex 12.1, 10 Evaluate the Given limit: limβ¬(zβ1) (π§^(1/3) β 1)/(π§^(1/6) β 1) limβ¬(zβ1) (π§^(1/3) β 1)/(π§^(1/6) β 1) = (γ(1)γ^(1/3) β 1)/(γ(1)γ^(1/6) β 1) = (1 β 1)/(1 β 1) = 0/0 Since it is form 0/0, We can solve it by using (πππ)β¬(π₯βπ) (π₯^π β π^π)/(π₯ β π) = nan β 1 Hence, limβ¬(zβ1) (π§^(1/3) β 1)/(π§^(1/6) β 1) = limβ¬(zβ1) π§^(1/3) β 1 Γ· limβ¬(zβ1) π§^(1/6) β 1 = limβ¬(zβ1) π§^(1/3) β γ(1)γ^(1/3) Γ· limβ¬(zβ1) π§^(1/6) β γ(1)γ^(1/6) Multiplying and dividing by z β 1 = limβ¬(zβ1) (π§^(1/3) β γ(1)γ^(1/3))/(π§ β 1) Γ· limβ¬(zβ1) (π§^(1/6) βγ (1)γ^(1/6))/(π§ β 1) Using (πππ)β¬(π₯βπ) ( π₯^π β π^π)/(π₯ β π) = nan β 1 limβ¬(zβ1) (π§^(1/3) β γ(1)γ^(1/3))/(π§ β1) = 1/3 γ(1)γ^(1/3 β 1) = 1/3 Γ 1 = 1/3 limβ¬(zβ1) (π§^(1/6) β γ(1)γ^(1/6))/(π§ β1) = 1/6 γ(1)γ^(1/6 β 1) = 1/6 Γ 1 = 1/6 Hence our equation becomes = limβ¬(zβ1) (π§^(1/3) β γ(1)γ^(1/3))/(π§ β 1) Γ· limβ¬(zβ1) (π§^(1/6) β 6)/(π§ β 1) = 1/3 Γ·1/6 = 1/3 Γ 6/1 = 2