

Ex 13.1 (Term 1)
Ex 13.1, 2
Ex 13.1, 3
Ex 13.1, 4 Important
Ex 13.1, 5
Ex 13.1, 6 Important
Ex 13.1, 7
Ex 13.1, 8 Important
Ex 13.1, 9
Ex 13.1,10 Important
Ex 13.1, 11
Ex 13.1, 12
Ex 13.1, 13
Ex 13.1, 14 Important
Ex 13.1, 15 Important
Ex 13.1, 16
Ex 13.1, 17 Important
Ex 13.1, 18
Ex 13.1, 19 Important
Ex 13.1, 20 You are here
Ex 13.1, 21 Important
Ex 13.1, 22 Important
Ex 13.1, 23
Ex 13.1, 24
Ex 13.1, 25 Important
Ex 13.1, 26
Ex 13.1, 27
Ex 13.1, 28 Important
Ex 13.1, 29
Ex 13.1, 30 Important
Ex 13.1, 31
Ex 13.1, 32 Important
Last updated at May 4, 2020 by Teachoo
Ex 13.1, 20 Evaluate the Given limit: limβ¬(xβ0) (π ππβ‘ππ₯ + ππ₯)/(ππ₯ + π ππβ‘ππ₯ ) a , b, a + b β 0 limβ¬(xβ0) (π ππβ‘ππ₯ + ππ₯)/(ππ₯ +γ π ππγβ‘ππ₯ ) = limβ¬(xβ0) π₯(π ππβ‘ππ₯/π₯ + π)/π₯(π + π ππβ‘ππ₯/π₯) = limβ¬(xβ0) ((π ππβ‘ππ₯/π₯ ) + π)/(π + ( π ππβ‘ππ₯/π₯) ) Multiply & Divide by π ππβ‘ππ₯/π₯ by ax & Multiply & Divide π ππβ‘γπ₯ γ/π by bx = limβ¬(xβ0) ((π ππβ‘ππ₯/π₯ . ππ₯/ππ₯ ) + π)/(π + ( π ππβ‘ππ₯/π₯ . ππ₯/ππ₯) ) = limβ¬(xβ0) ((π ππβ‘ππ₯/ππ₯ . ππ₯/π₯ ) + π)/(π + ( π ππβ‘ππ₯/ππ₯ . ππ₯/π₯) ) = limβ¬(xβ0) ((πππβ‘ππ/ππ). π + π)/(π + ( πππβ‘ππ/ππ) π) Using limβ¬(xβ0) (sinβ‘x )/x = 1 Replacing x by ax. limβ¬(xβ0) sinβ‘ππ₯/ax = 1 Replacing x by bx limβ¬(xβ0) (sinβ‘bx )/bx = 1 = ((π) π + π)/(π +(π)π) = (π + π)/(π + π) = 1