Get live Maths 1-on-1 Classs - Class 6 to 12
Ex 13.1
Ex 13.1, 2
Ex 13.1, 3
Ex 13.1, 4 Important
Ex 13.1, 5
Ex 13.1, 6 Important
Ex 13.1, 7
Ex 13.1, 8 Important
Ex 13.1, 9
Ex 13.1,10 Important
Ex 13.1, 11
Ex 13.1, 12
Ex 13.1, 13
Ex 13.1, 14 Important
Ex 13.1, 15 Important
Ex 13.1, 16
Ex 13.1, 17 Important
Ex 13.1, 18
Ex 13.1, 19 Important
Ex 13.1, 20
Ex 13.1, 21 Important
Ex 13.1, 22 Important
Ex 13.1, 23
Ex 13.1, 24
Ex 13.1, 25 Important
Ex 13.1, 26
Ex 13.1, 27 You are here
Ex 13.1, 28 Important
Ex 13.1, 29
Ex 13.1, 30 Important
Ex 13.1, 31
Ex 13.1, 32 Important
Last updated at March 30, 2023 by Teachoo
Ex 13.1, 27 Find lim┬(x→5) f(x), where f(x) = |x| – 5 Finding limit at x = 5 LHL at x → 5 lim┬(x→5^− ) f(x) = lim┬(h→0) f(5 − h) = lim┬(h→0) |5−ℎ| – 5 = lim┬(h→0) (5−ℎ) – 5 = lim┬(h→0) −ℎ = 0 RHL at x → 5 lim┬(x→5^+ ) f(x) = lim┬(h→0) f(5 + h) = lim┬(h→0) |5+ℎ| – 5 = lim┬(h→0) (5+ℎ) – 5 = lim┬(h→0) ℎ = 0 Thus, (𝒍𝒊𝒎)┬(𝐱→𝟓) f(x) = 0