Slide27.JPG

Slide28.JPG

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

Transcript

Ex 7.6, 24 ∫1▒𝑒^π‘₯ sec⁑π‘₯ (1+tan⁑π‘₯ )𝑑π‘₯ "ex" cos x + C (B) "ex" sec x + C (C) "ex" sin x + C (D) 𝑒π‘₯ tan x + C ∫1▒𝑒^π‘₯ sec⁑π‘₯ (1+tan⁑π‘₯ )𝑑π‘₯ = ∫1▒𝑒^π‘₯ (sec⁑π‘₯+sec⁑π‘₯ tan⁑π‘₯ )𝑑π‘₯ It is of the form ∫1▒〖𝑒^π‘₯ [𝑓(π‘₯)+𝑓^β€² (π‘₯)] γ€— 𝑑π‘₯=𝑒^π‘₯ 𝑓(π‘₯)+𝐢 Where 𝑓(π‘₯)=sec⁑π‘₯ 𝑓^β€² (π‘₯)=sec⁑π‘₯ tan⁑π‘₯ So, our equation becomes ∫1▒〖𝑒π‘₯ (sec⁑π‘₯+sec⁑π‘₯ tan⁑π‘₯ ) γ€— 𝑑π‘₯ = 𝑒^π‘₯ sec⁑π‘₯+𝐢 ∴ Option (B) is correct.

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.