# Ex 7.6, 21

Last updated at Dec. 8, 2016 by Teachoo

Last updated at Dec. 8, 2016 by Teachoo

Transcript

Ex 7.6, 21 𝑒2𝑥 sin𝑥 I = 𝑒2𝑥 sin𝑥 .𝑑𝑥 ∴ I = sin𝑥. 𝑒2𝑥 𝑑𝑥 I = sin𝑥 𝑒2𝑥 𝑑𝑥− 𝑑 sin𝑥𝑑𝑥 𝑒2𝑥 𝑑𝑥𝑑𝑥 I = sin𝑥 . 𝑒2𝑥2 − cos𝑥 . 𝑒2𝑥2𝑑𝑥 I = 12 . 𝑒2𝑥 sin𝑥− 12 cos𝑥 . 𝑒2𝑥𝑑𝑥 Solving I2 = 12 cos𝑥 . 𝑒2𝑥𝑑𝑥 ∴ I1 = 12 cos𝑥 . 𝑒2𝑥𝑑𝑥 = 12 cos𝑥 𝑒2𝑥 𝑑𝑥− 𝑑 cos𝑥𝑑𝑥 𝑒2𝑥 𝑑𝑥𝑑𝑥 = 12 cos𝑥 . 𝑒2𝑥2 − (− sin𝑥) . 𝑒2𝑥2 𝑑𝑥 = 12 𝑒2𝑥 . cos𝑥 2 + 12 𝑒2𝑥 sin𝑥 𝑑𝑥 = 12 𝑒2𝑥 . cos𝑥 2 + 12 I+𝐶1 Putting the value of I1 in (1) , we get I = 𝑒2𝑥 sin𝑥 𝑑𝑥 I = 𝑒2𝑥 sin𝑥2 − 12 𝑒2𝑥 . cos𝑥 2 + I2+𝐶1 I = 𝑒2𝑥2 sin𝑥− 𝑒2𝑥 4 cos𝑥− I4−𝐶1 𝐼+ I4 = 𝑒2𝑥 sin𝑥2 − 𝑒2𝑥 . cos𝑥 4 5𝐼4 = 𝑒2𝑥4 2 sin𝑥− cos𝑥− 𝐶1 𝐼 = 45 . 𝑒2𝑥4 2 sin𝑥− cos𝑥− 4𝐶15 𝐼 = 𝒆𝟐𝒙𝟓 𝟐 𝒔𝒊𝒏𝒙− 𝒄𝒐𝒔𝒙+𝑪

Ex 7.6, 1

Ex 7.6, 2

Ex 7.6, 3

Ex 7.6, 4

Ex 7.6, 5

Ex 7.6, 6

Ex 7.6, 7

Ex 7.6, 8

Ex 7.6, 9

Ex 7.6, 10

Ex 7.6, 11

Ex 7.6, 12

Ex 7.6, 13 Important

Ex 7.6, 14 Important

Ex 7.6, 15

Ex 7.6, 16

Ex 7.6, 17

Ex 7.6, 18 Important

Ex 7.6, 19 Important

Ex 7.6, 20

Ex 7.6, 21 You are here

Ex 7.6, 22

Ex 7.6, 23

Ex 7.6, 24 Important

About the Author

CA Maninder Singh

CA Maninder Singh is a Chartered Accountant for the past 8 years. He provides courses for Practical Accounts, Taxation and Efiling at teachoo.com .