


Ex 7.6
Ex 7.6, 2 Important
Ex 7.6, 3
Ex 7.6, 4
Ex 7.6, 5 Important
Ex 7.6, 6
Ex 7.6, 7 Important
Ex 7.6, 8
Ex 7.6, 9
Ex 7.6, 10 Important
Ex 7.6, 11
Ex 7.6, 12
Ex 7.6, 13 Important
Ex 7.6, 14 Important
Ex 7.6, 15
Ex 7.6, 16
Ex 7.6, 17
Ex 7.6, 18 Important
Ex 7.6, 19
Ex 7.6, 20 Important
Ex 7.6, 21 You are here
Ex 7.6, 22 Important
Ex 7.6, 23 (MCQ)
Ex 7.6, 24 (MCQ) Important
Ex 7.6, 21 - Chapter 7 Class 12 Integrals - NCERT Solution Integrate e^2x sin x I = ∫ e^2x sin x dx Using ILATE e^2x -> Exponential sin x -> Trigonometric We know that ∫ f(x) g(x) dx = f(x) ∫ g(x) dx - ∫ (f'(x) ∫ g(x)dx)dx Putting f(x) = e^2x, g(x) = sin x I = sin . 2 I = sin 2 sin 2 I = sin . 2 2 cos . 2 2 I = 1 2 . 2 sin 1 2 cos . 2 Solving I2 = 1 2 cos . 2 I1 = 1 2 cos . 2 = 1 2 cos 2 cos 2 = 1 2 cos . 2 2 ( sin ) . 2 2 = 1 2 2 . cos 2 + 1 2 2 sin = 1 2 2 . cos 2 + 1 2 I + 1 Putting the value of I1 in (1) , we get I = 2 sin I = 2 sin 2 1 2 2 . cos 2 + I 2 + 1 I = 2 2 sin 2 4 cos I 4 1 + I 4 = 2 sin 2 2 . cos 4 5 4 = 2 4 2 sin cos 1 = 4 5 . 2 4 2 sin cos 4 1 5 = +