Ex 7.6, 10 - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Ex 7.6
Ex 7.6, 2 Important
Ex 7.6, 3
Ex 7.6, 4
Ex 7.6, 5 Important
Ex 7.6, 6
Ex 7.6, 7 Important
Ex 7.6, 8
Ex 7.6, 9
Ex 7.6, 10 Important You are here
Ex 7.6, 11
Ex 7.6, 12
Ex 7.6, 13 Important
Ex 7.6, 14 Important
Ex 7.6, 15
Ex 7.6, 16
Ex 7.6, 17
Ex 7.6, 18 Important
Ex 7.6, 19
Ex 7.6, 20 Important
Ex 7.6, 21
Ex 7.6, 22 Important
Ex 7.6, 23 (MCQ)
Ex 7.6, 24 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 7.6, 10 (sin^(β1)β‘π₯ )^2 β«1β(sin^(β1)β‘π₯ )^2 ππ₯ Let sin^(β1)β‘π₯=π β΄ π₯=sinβ‘π Differentiating both sides π€.π.π‘.π₯ ππ₯/ππ=cosβ‘π ππ₯=cosβ‘π.ππ Thus, our equation becomes β«1β(sin^(β1)β‘π₯ )^2 ππ₯ = β«1βπ^2 . cosβ‘π.ππ =π^2 β«1βγcosβ‘π.ππγββ«1β(π(π^2 )/ππ β«1βγcosβ‘π.ππγ)ππ =π^2 sinβ‘πββ«1βγ2π.sinβ‘π. ππγ =π^2 sinβ‘πβ2β«1βγπ½ πππβ‘π½. π π½γ We know that β«1βγπ(π₯) πβ‘(π₯) γ ππ₯=π(π₯) β«1βπ(π₯) ππ₯ββ«1β(π^β² (π₯) β«1βπ(π₯) ππ₯) ππ₯ Putting f(x) = ΞΈ2 and g(x) = cos ΞΈ Solving I1 β«1βγπ½ πππβ‘π½. π π½γ = πβ«1βγsinβ‘π ππγββ«1β(ππ/ππ β«1βγsinβ‘π ππγ) ππ = π(βcosβ‘π )ββ«1βγ1.(βcosβ‘π ) γ ππ = βπ cosβ‘π+β«1βcosβ‘π ππ = (βπ cosβ‘π+sinβ‘π )+πΆ1 Now we know that β«1βγπ(π₯) πβ‘(π₯) γ ππ₯=π(π₯) β«1βπ(π₯) ππ₯ββ«1β(πβ²(π₯)β«1βπ(π₯) ππ₯) ππ₯ Putting f(x) = ΞΈ and g(x) = sin ΞΈ Putting value of I1 in our equation β«1β(sin^(β1)β‘π₯ )^2 ππ₯ = π^2 sinβ‘πβ2β«1βγπ½ πππβ‘π½. π π½γ =π^2 sinβ‘πβ2(βπ cosβ‘π+sinβ‘π+πΆ1) =π^2 sinβ‘π+2π cosβ‘πβ2 sinβ‘πβ2πΆ1 =π^2 sinβ‘π+2πβ(1βsin^2β‘γπ γ )β2 sinβ‘πβπͺπ =π^2 sinβ‘π+2πβ(1βsin^2β‘γπ γ )β2 sinβ‘π+πͺ =(γπ¬π’π§γ^(βπ)β‘π )^π π+π(γπ¬π’π§γ^(βπ)β‘π ) β(γπβγβ‘γπ^π γ )βππ+πͺ ππ πππ π=sin^(β1)β‘π₯ & sinβ‘π=π₯