Ex 7.6, 18 - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Ex 7.6
Ex 7.6, 2 Important
Ex 7.6, 3
Ex 7.6, 4
Ex 7.6, 5 Important
Ex 7.6, 6
Ex 7.6, 7 Important
Ex 7.6, 8
Ex 7.6, 9
Ex 7.6, 10 Important
Ex 7.6, 11
Ex 7.6, 12
Ex 7.6, 13 Important
Ex 7.6, 14 Important
Ex 7.6, 15
Ex 7.6, 16
Ex 7.6, 17
Ex 7.6, 18 Important You are here
Ex 7.6, 19
Ex 7.6, 20 Important
Ex 7.6, 21
Ex 7.6, 22 Important
Ex 7.6, 23 (MCQ)
Ex 7.6, 24 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 7.6, 18 Integrate the function - ππ₯ ((1 + sinβ‘π₯)/(1 + cosβ‘π₯ )) Simplifying function π^π₯ ((1 + sinβ‘π₯)/(1 + cosβ‘π₯ )) π^π₯ ((1 + sinβ‘π₯)/(1 + cosβ‘π₯ ))=π^π₯ ((1 + 2 sinβ‘(π₯/2) cosβ‘(π₯/2))/(2 γπππ ^2γβ‘(π₯/2) )) πππβ‘ππ=π πππβ‘π πππβ‘π Replacing x by π₯/2 , we get γπ ππ 2γβ‘(π₯/2)=2 π ππβ‘(π₯/2) πππ β‘(π₯/2) π ππβ‘π₯=2 π ππβ‘(π₯/2) πππ β‘(π₯/2) ππ¨π¬β‘ππ= 2γ"cos" γ^π π½βπ Replacing ππ₯ by π₯/2 γπππ 2γβ‘(π₯/2)=2πππ ^2 (π₯/2)β1 1+πππ β‘π₯=2πππ ^2 π₯/2 We know γπ ππ^2γβ‘π₯+γπππ ^2γβ‘π₯β‘= 1 Replacing x by π₯/2 , we get γπ ππ^2γβ‘(π₯/2)β‘γ+γπππ ^2γβ‘(π₯/2) γ=1 =π^π₯ ((γπππγ^πβ‘(π/π) + γπππγ^πβ‘(π/π) +2 γsin γβ‘γπ₯/2γ . γcos γβ‘γπ₯/2γ)/( 2 γπππ ^2γβ‘(π₯/2) )) =π^π₯ ((γsin γβ‘γπ₯/2γ + γcos γβ‘γπ₯/2γ )^2/( 2 γπππ ^2γβ‘(π₯/2) )) =π^π₯/2 ((γsin γβ‘γπ₯/2γ + γcos γβ‘γπ₯/2γ)/( πππ β‘γ π₯/2γ ))^2 =π^π₯/2 (γsin γβ‘γπ₯/2γ/( πππ β‘γ π₯/2γ ) + γcos γβ‘γπ₯/2γ/( πππ β‘γ π₯/2γ ))^2 =π^π₯/2 (γtan γβ‘γπ₯/2γ +1)^2 =π^π₯/2 (tan^2β‘γπ₯/2γ +(1)^2+2(γtan γβ‘γπ₯/2γ )(1)) =π^π₯/2 (γγπππγ^π γβ‘γπ/πγ +π+2 γtan γβ‘γπ₯/2γ ) =π^π₯/2 (γγπππγ^π γβ‘γπ/πγ +2 γtan γβ‘(π₯/2) ) =π^π₯ (1/2 . sec^2β‘γπ₯/2γ +2/2 γtan γβ‘(π₯/2) ) =π^π₯ (γtan γβ‘(π₯/2)+1/2 sec^2β‘(π₯/2) ) We know γ1+tan^2γβ‘π₯=sec^2β‘π₯ Replacing x by π₯/2 , we get γ1+γπ‘ππ^2γβ‘(π₯/2)γβ‘= sec^2 (π₯/2) Thus, Our Integration becomes β«1βγπ^π₯ " " ((1 + sinβ‘π₯)/(1 + cosβ‘π₯ )) ππ₯γ " "=β«1βγπ^π₯ (γtan γβ‘(π₯/2)+1/2 sec^2β‘(π₯/2) )ππ₯γ " " It is of the form β«1βγπ^π₯ [π(π₯)+π^β² (π₯)] γ ππ₯=π^π₯ π(π₯)+πΆ Where π(π₯)=tan^(β1)β‘π₯ π^β² (π₯)= 1/(1 + π₯^2 ) So, our equation becomes β«1βγπ^π₯ " " ((1 + sinβ‘π₯)/(1 + cosβ‘π₯ )) ππ₯γ " " = π^π γπππ γβ‘γπ/πγ+πͺ