

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 7.6
Ex 7.6, 2 Important
Ex 7.6, 3
Ex 7.6, 4
Ex 7.6, 5 Important
Ex 7.6, 6
Ex 7.6, 7 Important
Ex 7.6, 8
Ex 7.6, 9
Ex 7.6, 10 Important
Ex 7.6, 11
Ex 7.6, 12
Ex 7.6, 13 Important
Ex 7.6, 14 Important You are here
Ex 7.6, 15
Ex 7.6, 16
Ex 7.6, 17
Ex 7.6, 18 Important
Ex 7.6, 19
Ex 7.6, 20 Important
Ex 7.6, 21
Ex 7.6, 22 Important
Ex 7.6, 23 (MCQ)
Ex 7.6, 24 (MCQ) Important
Last updated at May 29, 2023 by Teachoo
Ex 7.6, 14 〖𝑥(log𝑥)〗^2 ∫1▒〖𝑥(log𝑥 )^2.𝑑𝑥 " " 〗 ∴ ∫1▒〖𝑥(log𝑥 )^2.𝑑𝑥〗=∫1▒〖(log𝑥 )^2 𝑥 .𝑑𝑥〗 = (log𝑥 )^2 ∫1▒〖𝑥 .〗 𝑑𝑥−∫1▒((𝑑(log𝑥 )^2)/𝑑𝑥 ∫1▒〖𝑥 .𝑑𝑥〗) 𝑑𝑥 = (log𝑥 )^2 . 𝑥^2/2−∫1▒(2(log𝑥 ) 1/𝑥 ∫1▒〖𝑥 .𝑑𝑥〗) 𝑑𝑥 Now we know that ∫1▒〖𝑓(𝑥) 𝑔(𝑥) 〗 𝑑𝑥=𝑓(𝑥) ∫1▒𝑔(𝑥) 𝑑𝑥−∫1▒(𝑓′(𝑥)∫1▒𝑔(𝑥) 𝑑𝑥) 𝑑𝑥 Putting f(x) = x and g(x) = (log x)2 = 𝑥^2/2 (log𝑥 )^2−2∫1▒〖log𝑥/𝑥 . 𝑥^2/2〗 𝑑𝑥 = 𝑥^2/2 (log𝑥 )^2−∫1▒〖𝑥 log𝑥 〗 𝑑𝑥 Solving I1 I1 = ∫1▒〖𝑥 log𝑥 〗 𝑑𝑥 ∫1▒〖𝑥 log𝑥 〗 𝑑𝑥=∫1▒(log𝑥 )𝑥 𝑑𝑥 =log𝑥 ∫1▒𝑥 𝑑𝑥−∫1▒(𝑑(log𝑥 )/𝑑𝑥 ∫1▒〖𝑥.𝑑𝑥〗)𝑑𝑥 Now we know that ∫1▒〖𝑓(𝑥) 𝑔(𝑥) 〗 𝑑𝑥=𝑓(𝑥) ∫1▒𝑔(𝑥) 𝑑𝑥−∫1▒(𝑓′(𝑥)∫1▒𝑔(𝑥) 𝑑𝑥) 𝑑𝑥 Putting f(x) = x and g(x) = log x =log𝑥 (𝑥^2/2)−∫1▒〖1/𝑥 . 𝑥^2/2. 𝑑𝑥〗 =〖𝑥^2/2 log〗〖 𝑥〗−1/2 ∫1▒〖𝑥. 𝑑𝑥〗 =〖𝑥^2/2 log〗𝑥−1/2 . 𝑥^2/2 +𝐶 =〖𝑥^2/2 𝑙𝑜𝑔〗〖 𝑥〗− 𝑥^2/4 +𝐶 Putting value of I1 in (1), ∫1▒〖𝑥(log𝑥 )^2.𝑑𝑥〗=𝑥^2/2 (log𝑥 )^2−∫1▒〖 𝒙 .𝒍𝒐𝒈𝒙 𝒅𝒙〗 =𝑥^2/2 (log𝑥 )^2−((𝑥^2 (log𝑥 ))/2 − 𝑥^2/4 +𝐶1) =𝑥^2/2 (log𝑥 )^2− (𝑥^2 (log𝑥 ))/2 + 𝑥^2/4 −𝐶1 =𝒙^𝟐/𝟐 (𝒍𝒐𝒈𝒙 )^𝟐− (𝒙^𝟐 (𝒍𝒐𝒈𝒙 ))/𝟐 + 𝒙^𝟐/𝟒+𝑪 " "