Ex 9.3, 16 - Chapter 9 Class 12 Differential Equations
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 9.3, 16 For the differential equation ๐ฅ๐ฆ ๐๐ฆ/๐๐ฅ=(๐ฅ+2)(๐ฆ+2) , find the solution curve passing through the point (1 , โ1) ๐ฅ๐ฆ ๐๐ฆ/๐๐ฅ=(๐ฅ+2)(๐ฆ+2) (๐ฆ ๐๐ฆ)/(๐ฆ + 2) = (๐ฅ + 2)/๐ฅ dx Integrating both sides โซ1โ๐/(๐ + ๐) dy = โซ1โ(๐ + ๐)/๐ dx โซ1โ(๐ฆ + 2 โ 2)/(๐ฆ + 2) dy = โซ1โ(1+( 2)/๐ฅ) ๐๐ฅ โซ1โ(1โ( 2)/(๐ฆ + 2)) dy = โซ1โ(1+( 2)/๐ฅ) ๐๐ฅ y โ 2 log (y + 2) = x + 2 log x + C Since curve passes through (1, โ 1) Putting x = 1 and y = โ1 in (1) โ1 โ 2 log (โ1 + 2) = 1 + 2 log 1 + C โ1 โ 2log1 = 1 + 2log1 + C โ1 = 1 + C C = โ2 Put C = โ2 In (1) y = 2 log (y + 2) + x + 2 log x โ 2 y โ x + 2 = log (y + 2)2 + log x2 y โ x + 2 = log (x2 (y + 2)2)
Ex 9.3
Ex 9.3, 2
Ex 9.3, 3
Ex 9.3, 4 Important
Ex 9.3, 5
Ex 9.3, 6
Ex 9.3, 7 Important
Ex 9.3, 8
Ex 9.3, 9 Important
Ex 9.3, 10 Important
Ex 9.3, 11 Important
Ex 9.3, 12
Ex 9.3, 13
Ex 9.3, 14
Ex 9.3, 15 Important
Ex 9.3, 16 You are here
Ex 9.3, 17 Important
Ex 9.3, 18
Ex 9.3, 19 Important
Ex 9.3, 20 Important
Ex 9.3, 21
Ex 9.3, 22 Important
Ex 9.3, 23 (MCQ)
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo