Last updated at Dec. 16, 2024 by Teachoo
Ex 9.3, 4 For each of the differential equations in Exercises 1 to 10, find the general solution : sec^2β‘γπ₯ tanβ‘γπ¦ ππ₯+sec^2β‘γπ¦ tanβ‘γπ₯ππ¦=0γ γ γ γsec^2β‘γπ₯ tanβ‘γπ¦ ππ₯+sec^2β‘γπ¦ tanβ‘γπ₯ππ¦=0γ γ γ γ Dividing both sides by tan y tan x (π ππ2π₯ π‘ππβ‘π¦ ππ₯ +γπ ππγ^2β‘π¦ π‘ππβ‘γπ₯ ππ¦γ)/π‘ππβ‘γπ¦ π‘ππβ‘π₯ γ = 0/π‘ππβ‘γπ₯ π‘ππβ‘π¦ γ (π ππ2π₯ π‘πππ¦ ππ₯)/π‘ππβ‘γπ¦ π‘ππβ‘π₯ γ + (π ππ2π¦ π‘πππ₯ ππ¦)/π‘ππβ‘γπ¦ π‘ππβ‘π₯ γ = 0 (πππππ )/πππ§β‘π dx + πππππ/πππβ‘π dy = 0 Integrating both sides β«1βγ(π ππ2π₯/tanβ‘π₯ ππ₯+π ππ2π¦/tanβ‘π¦ ππ¦)=γ 0 β«1βγπππππ/πππβ‘π π π+β«1βγπππππ/πππβ‘π π πγ=γ 0 Put u = tan x and v = tan y Diff u w.r.t. x & v w.r.t y Therefore, our equation becomes β«1βγsec^2β‘π₯/tanβ‘π₯ ππ₯γ+β«1βγsec^2β‘π¦/tanβ‘π¦ ππ¦=0γ ππ’/ππ₯ = π ππ2π₯ π π/πππππ" " = dx ππ£/ππ¦ = π ππ2π¦ π π/πππππ" " = dy β«1βγsec^2β‘π₯/tanβ‘π₯ ππ’/sec^2β‘π₯ γ+β«1βγ sec^2β‘π¦/π£ ππ£/sec^2β‘π¦ =0γ β«1βγππ’/π’+β«1βγππ£/π£=0γγ log |π|+πππβ‘|π|=πππβ‘π Putting back u = tan x and v = tan y log |πππβ‘π | + log |πππ§β‘π |=π₯π¨π β‘π log |tanβ‘γπ₯+tanβ‘π¦ γ | =logβ‘π tan x tan y = C
Ex 9.3
Ex 9.3, 2
Ex 9.3, 3
Ex 9.3, 4 Important You are here
Ex 9.3, 5
Ex 9.3, 6
Ex 9.3, 7 Important
Ex 9.3, 8
Ex 9.3, 9 Important
Ex 9.3, 10 Important
Ex 9.3, 11 Important
Ex 9.3, 12
Ex 9.3, 13
Ex 9.3, 14
Ex 9.3, 15 Important
Ex 9.3, 16
Ex 9.3, 17 Important
Ex 9.3, 18
Ex 9.3, 19 Important
Ex 9.3, 20 Important
Ex 9.3, 21
Ex 9.3, 22 Important
Ex 9.3, 23 (MCQ)
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo