Question 8 - Tangents and Normals (using Differentiation) - Chapter 6 Class 12 Application of Derivatives
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Question 8 Find a point on the curve 𝑦=(𝑥−2)^2 at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).Given Curves is 𝑦=(𝑥−2)^2 Let AB be the chord joining the Point (2 , 0) & (4 ,4) & CD be the tangent to the Curve 𝑦=(𝑥−2)^2 Given that tangent is Parallel to the chord i.e. CD ∥ AB ∴ Slope of CD = Slope of AB If two lines are parallel, then their slopes are equal Slope of tangent CD Slope of tangent CD = 𝑑𝑦/𝑑𝑥 =(𝑑(𝑥 − 2)^2)/𝑑𝑥 = 2(𝑥−2) (𝑑 (𝑥 − 2))/𝑑𝑥 = 2(𝑥−2) (1−0) = 2(𝑥−2) Slope of AB As AB is chord joining Points (2 , 0) & (4 , 4) Slope of AB =(4 − 0)/(4 − 2) =4/2 As slope of line joining point (𝑥 , 𝑦) & (𝑥2 , 𝑦2) 𝑖𝑠 (𝑦2 − 𝑦1)/(𝑥2 − 𝑥1) =2 Now, Slope of CD = Slope of AB 2(𝑥−2)=2 𝑥−2=2/2 𝑥−2=1 𝑥=3 Finding y when 𝑥=3 𝑦=(𝑥−2)^2 𝑦=(3−2)^2 𝑦=(1)^2 𝑦=1 Hence, Point is (𝟑 , 𝟏) Thus, the tangent is parallel to the chord at (3 ,1)
Tangents and Normals (using Differentiation)
Question 2
Question 3 Important
Question 4
Question 5 Important
Question 6
Question 7 Important
Question 8 You are here
Question 9 Important
Question 10
Question 11 Important
Question 12
Question 13
Question 14 (i)
Question 14 (ii) Important
Question 14 (iii)
Question 14 (iv) Important
Question 14 (v)
Question 15 Important
Question 16
Question 17
Question 18 Important
Question 19
Question 20
Question 21 Important
Question 22
Question 23 Important
Question 24 Important
Question 25
Question 26 (MCQ) Important
Question 27 (MCQ)
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo