Check sibling questions


Transcript

Ex 3.3, 24 Prove that cos 4๐‘ฅ = 1 โ€“ 8sin2 ๐‘ฅ cos2 ๐‘ฅ Solving L.H.S. cos 4x = 2(cos 2x)2 โ€“ 1 = 2 ( 2 cos2 x โ€“ 1)2 -1 We know that cos 2x = 2 cos2 x โ€“ 1 Replacing by 2x cos 2(2x) = 2 cos2 (2x) โˆ’ 1 cos 4x = 2 cos2 2x โˆ’ 1 Using (a โ€“ b)2 = a2 + b2 โ€“ 2ab = 2 [(2cos x)2 + (1)2 โ€“ 2 ( 2cos2x ) ร— 1] โ€“ 1 = 2 (4cos4x + 1 โ€“ 4 cos2x ) โ€“ 1 = 2 ร— 4cos4x + 2 ร— 1โ€“ 2 ร— 4 cos2x โ€“ 1 = 2 ร— 4cos4x + 2 ร— 1โ€“ 2 ร— 4 cos2x โ€“ 1 = 8cos4x + 2 โ€“ 8 cos2x โ€“ 1 = 8cos4x โ€“ 8 cos2x + 2 โ€“ 1 = 8cos4x โ€“ 8 cos2x + 1 = 8cos2x (cos2x โ€“ 1) + 1 = 8cos2x [โ€“ (1 โ€“ cos2x)] + 1 = โ€“8cos2x [(1 โ€“ cos2x )] + 1 = โ€“ 8cos2x sin2x + 1 = 1 โ€“ 8 cos2x sin2x = R.H.S. Hence R.H.S. = L.H.S. Hence proved

  1. Chapter 3 Class 11 Trigonometric Functions
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo