Check sibling questions


Transcript

Ex 3.3, 23 Prove that tan⁑4π‘₯ = (4 tan⁑〖π‘₯ (1βˆ’tan2π‘₯)γ€—)/(1 βˆ’ 6 tan2 π‘₯+tan4 π‘₯) Solving L.H.S. tan 4x We know that tan 2x = (2 π‘‘π‘Žπ‘›β‘π‘₯)/(1 βˆ’ π‘‘π‘Žπ‘›2 π‘₯) Replacing x with 2x tan (2 Γ— 2x) = (2 π‘‘π‘Žπ‘›β‘2π‘₯)/(1 βˆ’ π‘‘π‘Žπ‘›2 2π‘₯) tan 4x = (2 π‘‘π‘Žπ‘›β‘2π‘₯)/(1 βˆ’ π‘‘π‘Žπ‘›2 2π‘₯) = (𝟐 𝐭𝐚𝐧⁑𝟐𝐱)/(𝟏 βˆ’ 𝐭𝐚𝐧𝟐 𝟐𝐱) = 2((𝟐 𝒕𝒂𝒏⁑𝒙)/(𝟏 βˆ’ π’•π’‚π’πŸ 𝒙))/(1 βˆ’ ((𝟐 𝒕𝒂𝒏⁑𝒙)/(𝟏 βˆ’ π’•π’‚π’πŸ 𝒙))^2 ) = (((4 tan⁑π‘₯)/(1 βˆ’ π‘‘π‘Žπ‘›2 π‘₯)))/(1 βˆ’((2 tan⁑π‘₯ )^2/(1 βˆ’ π‘‘π‘Žπ‘›2 π‘₯)^2 ) ) = (((4 tan⁑π‘₯)/(1 βˆ’ π‘‘π‘Žπ‘›2 π‘₯)))/(1 βˆ’((4 γ€–π‘‘π‘Žπ‘›γ€—^2 π‘₯)/(1 βˆ’ π‘‘π‘Žπ‘›2 π‘₯)^2 ) ) = (((4 tan⁑π‘₯)/(1 βˆ’ π‘‘π‘Žπ‘›2 π‘₯)))/((((1 βˆ’ π‘‘π‘Žπ‘›2 π‘₯)^2 βˆ’4 γ€–π‘‘π‘Žπ‘›γ€—^2 π‘₯)/(1 βˆ’ π‘‘π‘Žπ‘›2 π‘₯)^2 ) ) = (πŸ’ 𝒕𝒂𝒏⁑𝒙)/(𝟏 βˆ’ π­πšπ§πŸβ‘π’™ ) Γ— (𝟏 βˆ’ π­πšπ§πŸβ‘π’™ )^𝟐/((𝟏 βˆ’ π’•π’‚π’πŸ 𝒙)𝟐 βˆ’πŸ’ π­πšπ§πŸβ‘π’™ ) = (4 tan⁑π‘₯)/1 Γ— ((1 βˆ’ tan2⁑〖π‘₯)γ€—)/((1 βˆ’ π‘‘π‘Žπ‘›2 π‘₯)2 βˆ’ 4 tan2⁑π‘₯ ) = (πŸ’ 𝒕𝒂𝒏⁑〖𝒙 (𝟏 βˆ’ π’•π’‚π’πŸ 𝒙〗))/((𝟏 βˆ’π­πšπ§πŸβ‘π’™ )𝟐 βˆ’ πŸ’ π’•π’‚π’β‘πŸπ’™ ) Using (a – b)2 = a2 + b2 – 2ab = (4 tan⁑〖π‘₯ (1 βˆ’ tan2⁑π‘₯)γ€—)/(( 12+(π‘‘π‘Žπ‘›2 π‘₯)2 βˆ’ 2 Γ— 1 Γ— π‘‘π‘Žπ‘›2 π‘₯) βˆ’4 π‘‘π‘Žπ‘›2 π‘₯) = (4 tan⁑〖π‘₯ (1 βˆ’ tan2⁑π‘₯)γ€—)/(1 + tan⁑〖4 π‘₯ βˆ’ 2 tan2⁑〖π‘₯ βˆ’4 tan2⁑π‘₯ γ€— γ€— ) = (πŸ’ 𝒕𝒂𝒏⁑〖𝒙 (𝟏 βˆ’ π­πšπ§πŸβ‘γ€–π’™)γ€— γ€—)/(𝟏 + π­πšπ§πŸ’β‘γ€–π’™ βˆ’ πŸ” π’•π’‚π’πŸ’ 𝒙〗 ) = R.H.S. Hence L.H.S. = R.H.S. Hence proved

  1. Chapter 3 Class 11 Trigonometric Functions
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo