Last updated at Dec. 13, 2024 by Teachoo
Ex 3.3, 19 Prove that 〖sin x +〗sin3x /(𝑐𝑜𝑠x + 𝑐𝑜𝑠3x ) = tan 2x Solving L.H.S. 〖sin x +〗sin3x /(𝑐𝑜𝑠x + 𝑐𝑜𝑠3x ) We solve sin x + sin 3x & cos x + cos 3x seperately sin x + sin 3x = 2 sin ((x+3x)/2) cos ((x−3x)/2) = 2 sin (4𝑥/2) cos ((−2𝑥)/2) = 2 sin 2x cos (–x) cos x + cos 3x = 2 cos ((x+3x)/2) cos ((5x−3x)/2) = 2 cos (4𝑥/2) cos ((−2𝑥)/2) = 2 cos 2x cos (–x) Now 𝑠𝑖𝑛〖𝑥 + 𝑠𝑖𝑛3𝑥 〗/𝑐𝑜𝑠〖𝑥 + 𝑐𝑜𝑠3𝑥 〗 = (𝟐 〖 𝒔𝒊𝒏 〗〖𝟐𝒙 𝒄𝒐𝒔〖(−𝒙)〗 〗)/(𝟐 𝒄𝒐𝒔〖 𝟐𝒙 𝒄𝒐𝒔〖(−𝒙)〗 〗 ) = 𝑠𝑖𝑛〖 2x〗/cos〖 2x〗 = tan 2x = R.H.S Hence L.H.S = R.H.S Hence proved
Ex 3.3
Ex 3.3, 2 Important
Ex 3.3, 3 Important
Ex 3.3, 4
Ex 3.3, 5 (i) Important
Ex 3.3, 5 (ii)
Ex 3.3, 6 Important
Ex 3.3, 7
Ex 3.3, 8 Important
Ex 3.3, 9 Important
Ex 3.3, 10
Ex 3.3, 11 Important
Ex 3.3, 12
Ex 3.3, 13 Important
Ex 3.3, 14
Ex 3.3, 15
Ex 3.3, 16 Important
Ex 3.3, 17
Ex 3.3, 18 Important
Ex 3.3, 19 You are here
Ex 3.3, 20
Ex 3.3, 21 Important
Ex 3.3, 22 Important
Ex 3.3, 23 Important
Ex 3.3, 24
Ex 3.3, 25
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo