Last updated at Dec. 16, 2024 by Teachoo
Ex 3.3, 5 Find the value of: (ii) tan 15° tan 15° = tan (45° – 30°) = (tan 45° − 〖 tan〗〖30°〗)/(1 + tan 45°tan〖30°〗 ) = (1 − 1/√3)/(1 + 1 × 1/√3) = ((√3 − 1" " )/√3)/((√3 + 1" " )/√3) = (√3 −1)/√3 × √3/(√3 + 1) = (√𝟑 − 𝟏)/(√𝟑 + 𝟏) Rationalizing = (√3 − 1)/(√3 + 1) × (√3 − 1)/(√3 − 1) = (√3 − 1)2/(√3 + 1)(√3 − 1) Using (a – b)2 = a2 + b2 – 2ab = ((√3)2 + 12 − 2" " × √3 × 1)/(√3 + 1)(√3 − 1) = (3 + 1 − 2√3)/(√(3 )+ 1)(√3 − 1) Using (a – b ) (a + b) = a2 – b2 = (𝟒 − 𝟐√𝟑)/((√𝟑)𝟐 − (𝟏)𝟐) = (4 − 2√3)/(3 − 1) = (2 (2 − √(3 )))/2 = 2 – √𝟑 Hence, tan 15° = 2 – √𝟑
Ex 3.3
Ex 3.3, 2 Important
Ex 3.3, 3 Important
Ex 3.3, 4
Ex 3.3, 5 (i) Important
Ex 3.3, 5 (ii) You are here
Ex 3.3, 6 Important
Ex 3.3, 7
Ex 3.3, 8 Important
Ex 3.3, 9 Important
Ex 3.3, 10
Ex 3.3, 11 Important
Ex 3.3, 12
Ex 3.3, 13 Important
Ex 3.3, 14
Ex 3.3, 15
Ex 3.3, 16 Important
Ex 3.3, 17
Ex 3.3, 18 Important
Ex 3.3, 19
Ex 3.3, 20
Ex 3.3, 21 Important
Ex 3.3, 22 Important
Ex 3.3, 23 Important
Ex 3.3, 24
Ex 3.3, 25
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo