Example 28 - Solve dx/dy + x/1 + y2 = tan-1 y / 1+y2 - Examples

Slide32.JPG
Slide33.JPG Slide34.JPG Slide35.JPG Slide36.JPG Examples 28 last slide.jpg

  1. Chapter 9 Class 12 Differential Equations
  2. Serial order wise

Transcript

Example 28 Solve the differential equation 𝑑π‘₯/𝑑𝑦+π‘₯/(1+𝑦^2 )=tan^(βˆ’1)⁑𝑦/(1+𝑦^2 ) 𝑑π‘₯/𝑑𝑦+π‘₯/(1 + 𝑦^2 )=tan^(βˆ’1)⁑𝑦/(1 + 𝑦^2 ) Differential equation is of the form 𝑑π‘₯/𝑑𝑦 + P1 x = Q1 where P1 = 1/(1 + 𝑦^2 ) & Q1 = (tan^(βˆ’1)⁑𝑦 )/(1 + 𝑦^2 ) Now, IF = 𝑒^∫1β–’"p1dy" IF = 𝑒^∫1β–’γ€–1/(1 + 𝑦^2 ) 𝑑𝑦〗 IF = 𝑒^tan^(βˆ’1)⁑𝑦 Solution is x (IF) = ∫1β–’γ€–(𝑄×𝐼𝐹)𝑑𝑦+𝐢〗 x𝑒^tan^(βˆ’1)⁑𝑦 = ∫1β–’(tan^(βˆ’1)⁑〖𝑦 𝑒^tan^(βˆ’1)⁑𝑦 γ€— )/(1 + 𝑦^2 ) dy + C Let I = ∫1β–’(tan^(βˆ’1)⁑〖𝑦 𝑒^tan^(βˆ’1)⁑𝑦 γ€— )/(1 + 𝑦^2 ) dy Putting tan^(βˆ’1)⁑〖𝑦 γ€—= t 1/(1 + 𝑦^2 ) dy = dt Putting values of t & dt in I I = ∫1▒〖𝑑𝑒^𝑑 𝑑𝑑〗 Integrating by parts with ∫1▒〖𝑓(𝑑) 𝑔(𝑑) 𝑑𝑑=𝑓(𝑑) ∫1▒〖𝑔(𝑑) 𝑑𝑑 βˆ’βˆ«1β–’γ€–[𝑓^β€² (𝑑) ∫1▒〖𝑔(𝑑) 𝑑𝑑] 𝑑𝑑〗〗〗〗 Take f (t) = t & g (t) = 𝑒^"t" I = t.∫1▒〖𝑒^𝑑 π‘‘π‘‘βˆ’βˆ«1β–’[1∫1▒〖𝑒^𝑑 𝑑𝑑〗] 𝑑𝑑〗 I = t𝑒^𝑑 βˆ’ ∫1▒〖𝑒^𝑑 𝑑𝑑〗 I = t𝑒^𝑑 βˆ’ 𝑒^𝑑 I = 𝑒^𝑑 (t βˆ’ 1) Putting value of t = tan^(βˆ’1)⁑𝑦 I = 𝑒^(tan^(βˆ’1)⁑𝑦 ) (tan^(βˆ’1) π‘¦βˆ’1) Putting value of I in (1) γ€–π‘₯𝑒〗^(tan^(βˆ’1)⁑𝑦 ) = 𝐼 + 𝐢 γ€–π‘₯𝑒〗^(tan^(βˆ’1) 𝑦 )= 𝑒^(tan^(βˆ’1) 𝑦 ) (tan^(βˆ’1)β‘π‘¦βˆ’1) + c Divide by 𝑒^(γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) 𝑦 ) γ€–π‘₯𝑒〗^(tan^(βˆ’1) 𝑦 )/𝑒^tan^(βˆ’1)⁑〖𝑦 γ€— = (𝑒^(tan^(βˆ’1) 𝑦) (tan^(βˆ’1)⁑𝑦 βˆ’ 1))/𝑒^tan^(βˆ’1)⁑〖𝑦 γ€— + 𝑐/𝑒^tan^(βˆ’1)⁑〖𝑦 γ€— 𝒙 = (〖𝒕𝒂𝒏〗^(βˆ’πŸ)β‘π’šβˆ’πŸ) + c𝒆^(βˆ’γ€–π’•π’‚π’γ€—^(βˆ’πŸ) π’š ) Which is the required general solution

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.