Maths Crash Course - Live lectures + all videos + Real time Doubt solving!

Examples

Example 1 (i)

Example 1 (ii) Important

Example 1 (iii) Important

Example 2

Example 3 Important

Example 4 Deleted for CBSE Board 2023 Exams

Example 5 Deleted for CBSE Board 2023 Exams

Example 6 Important Deleted for CBSE Board 2023 Exams

Example 7 Deleted for CBSE Board 2023 Exams

Example 8 Deleted for CBSE Board 2023 Exams

Example 9

Example 10

Example 11

Example 12 Important

Example 13

Example 14 Important

Example 15 Important

Example 16

Example 17 Important

Example 18 Important

Example 19 You are here

Example 20 Important

Example 21

Example 22 Important

Example 23 Important

Example 24

Example 25 Deleted for CBSE Board 2023 Exams

Example 26

Example 27 Important

Example 28 Important

Chapter 9 Class 12 Differential Equations

Serial order wise

Last updated at Dec. 24, 2018 by Teachoo

Maths Crash Course - Live lectures + all videos + Real time Doubt solving!

Example 19 Find the general solution of the differential equation ππ¦/ππ₯βπ¦=cosβ‘π₯ Differential equation is of the form ππ¦/ππ₯+ππ¦=π where P = β1 & Q = cos x IF = e^β«1βπππ₯ IF = e^(ββ«1β1ππ₯) IF = π^(βπ₯) Solution is y(IF) = β«1βγ(πΓπΌπΉ) ππ₯+πγ π¦π^(βπ₯) = β«1βπ^(βπ₯) cosβ‘γπ₯+πγ Let I = β«1βπ^(βπ₯) cosβ‘γπ₯ ππ₯γ Integrating by parts with β«1βγπ(π₯) π(π₯) ππ₯=π(π₯) β«1βγπ(π₯) ππ₯ ββ«1βγ[π^β² (π₯) β«1βγπ(π₯) ππ₯] ππ₯γγγγ Take f (x) = cos x & g (x) = π^"βx" I = cos x β«1βγπ^(βπ₯) ππ₯γβ β«1β[βsinβ‘γπ₯β«1βγπ^(βπ₯) ππ₯γγ ]ππ₯ I = γβπγ^(βπ₯)cos x ββ«1βγβsinβ‘γπ₯ (βπ^(βπ₯) γ)γ ππ₯ I = βeβx cos x β β«1βγπ^(βπ₯) sinβ‘γπ₯ ππ₯γ γ. Integrating by parts with β«1βγπ(π₯) π(π₯) ππ₯=π(π₯) β«1βγπ(π₯) ππ₯ ββ«1βγ[π^β² (π₯) β«1βγπ(π₯) ππ₯] ππ₯γγγγ Take f (x) = sin x g (x) = eβx I = βeβx cos x β [sinβ‘γπ₯ β«1βγπ^(βπ₯) ππ₯γββ«1βγ(cosγβ‘γπ₯ β«1βγπ^(βπ₯) ππ₯γ)γ "dx " γ ] I = βeβx cos x β [βπ^(βπ₯) sinβ‘γπ₯ ββ«1βγβπ^(βπ₯) cosβ‘π₯ ππ₯γ " " γ ] I = βeβx cos x β [βπ^(βπ₯) sinβ‘γπ₯+β«1βγπ^(βπ₯) cosβ‘π₯ ππ₯γ " " γ ] I = βeβx cos x + π^(βπ₯) sinβ‘γπ₯ββ«1βγπ^(βπ) πππβ‘π π πγ " " γ I = eβx (sin x β cos x) β I 2I = eβx (sin x β cos x) I = π^(βπ₯)/2 (sin x β cos x) From (1) y π^(βπ₯) = β«1βγπ^(βπ₯) cosβ‘γπ₯+πγ γ y π^(βπ₯) = π^(βπ₯)/2 (sin x β cos x) + c y = π/π (sin x β cos x) + cπ^π