Slide7.JPG

Slide8.JPG
Slide9.JPG


Transcript

Example 3 Verify that the function 𝑦=π‘Ž cos⁑〖π‘₯+𝑏 sin⁑〖π‘₯, γ€— γ€— where , π‘Ž, π‘βˆˆπ‘ is a solution of the differential equation (𝑑^2 𝑦)/(𝑑π‘₯^2 )+𝑦=0 𝑦=π‘Ž cos⁑〖π‘₯+𝑏 sin⁑〖π‘₯ γ€— γ€— π’…π’š/𝒅𝒙=𝑑/𝑑π‘₯ (π‘Ž cos⁑〖π‘₯+𝑏 sin⁑〖π‘₯ γ€— γ€— ) =π‘Ž 𝑑(cos⁑π‘₯ )/𝑑π‘₯+𝑏 𝑑(sin⁑π‘₯ )/𝑑π‘₯ =π‘Ž(γ€–βˆ’sin〗⁑π‘₯ )+𝑏(cos⁑π‘₯ ) =βˆ’π’‚ π’”π’Šπ’π’™+𝒃 𝒄𝒐𝒔𝒙 Now, (𝑑^2 𝑦)/(𝑑π‘₯^2 )=𝑑/𝑑π‘₯ (𝑑𝑦/𝑑π‘₯) (𝒅^𝟐 π’š)/(𝒅𝒙^𝟐 ) =𝒅/𝒅𝒙 (βˆ’π’‚ π’”π’Šπ’π’™+𝒃 𝒄𝒐𝒔𝒙) (𝑑^2 𝑦)/(𝑑π‘₯^2 ) =βˆ’π‘Ž 𝑑(sin⁑π‘₯ )/𝑑π‘₯+𝑏 (𝑑(cos⁑π‘₯))/𝑑π‘₯ (𝑑^2 𝑦)/(𝑑π‘₯^2 ) =βˆ’π‘Ž(cos⁑π‘₯ )+𝑏(βˆ’sin⁑π‘₯) (𝑑^2 𝑦)/(𝑑π‘₯^2 ) =βˆ’π‘Ž π‘π‘œπ‘ β‘γ€–π‘₯βˆ’π‘ 𝑠𝑖𝑛⁑π‘₯ γ€— (𝒅^𝟐 π’š)/(𝒅𝒙^𝟐 ) =βˆ’(𝒂 𝒄𝒐𝒔⁑〖𝒙+𝒃 π’”π’Šπ’β‘π’™ γ€— ) Putting y = π‘Ž cos⁑〖π‘₯+𝑏 sin⁑〖π‘₯ γ€— γ€— (𝒅^𝟐 π’š)/(𝒅𝒙^𝟐 )=βˆ’π’š (𝒅^𝟐 π’š)/(𝒅𝒙^𝟐 )+π’š=𝟎 ∴ Hence Verified

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.