Example 25 - Family of circles in second quadrant, touching - Examples

Slide21.JPG
Slide22.JPG Slide23.JPG

  1. Chapter 9 Class 12 Differential Equations
  2. Serial order wise
Ask Download

Transcript

Example 25 From the differential equation of the family of circles in the second quadrant and touching the coordinate axes . Drawing figure : Let C be the family of circles in second quadrant touching coordinate. Let radius be 𝑎 ∴ Center of circle = (−𝑎, 𝑎) Equation representing family C is x−(−𝑎)﷯﷮2﷯+ 𝑦−𝑎﷯﷮2﷯= 𝑎﷮2﷯ x + 𝑎﷯﷮2﷯+ 𝑦−𝑎﷯﷮2﷯= 𝑎﷮2﷯ 𝑥2 + 𝑎2 + 2ax + y2 + 𝑎2 − 2𝑎y = 𝑎2 𝑥2 + 𝑦2 + 2ax − 2ay + 2𝑎2 = 𝑎2 𝑥2 + y2 + 2𝑎x − 2𝑎y + 𝑎2 = 0 Differentiate w.r.t x 2x + 2y. 𝑑𝑦﷮𝑑𝑥﷯ + 2𝑎 − 2a 𝑑𝑦﷮𝑑𝑥﷯ + 0 = 0 x + y. 𝑑𝑦﷮𝑑𝑥﷯ + 𝑎 − 𝑎𝑑𝑦﷮𝑑𝑥﷯ = 0 x + y. 𝑑𝑦﷮𝑑𝑥﷯ = − 𝑎 + 𝑎𝑑𝑦﷮𝑑𝑥﷯ x + y 𝑑𝑦﷮𝑑𝑥﷯ = 𝑎 𝑑𝑦﷮𝑑𝑥﷯ −1﷯ 𝑎 = 𝑥 + 𝑦 𝑑𝑦﷮𝑑𝑥﷯ ﷮ 𝑑𝑦﷮𝑑𝑥﷯ − 1﷯ 𝑎 = 𝒙 + 𝒚 𝒚﷮′﷯ ﷮ 𝒚﷮′﷯ − 𝟏﷯ Putting value of a in (1) x−(−𝑎)﷯﷮2﷯+ 𝑦−𝑎﷯﷮2﷯= 𝑎﷮2﷯ x− − 𝑥 + 𝑦 𝑦﷮′﷯ ﷮ 𝑦﷮′﷯ − 1﷯﷯﷯﷮2﷯+ 𝑦− 𝑥 + 𝑦 𝑦﷮′﷯ ﷮ 𝑦﷮′﷯ − 1﷯﷯﷮2﷯= 𝑥 + 𝑦 𝑦﷮′﷯ ﷮ 𝑦﷮′﷯ − 1﷯﷯﷮2﷯ x+ 𝑥 + 𝑦 𝑦﷮′﷯ ﷮ 𝑦﷮′﷯ − 1﷯﷯﷮2﷯+ 𝑦− 𝑥 + 𝑦 𝑦﷮′﷯ ﷮ 𝑦﷮′﷯ − 1﷯﷯﷮2﷯= 𝑥 + 𝑦 𝑦﷮′﷯ ﷮ 𝑦﷮′﷯ − 1﷯﷯﷮2﷯ 𝑥 𝑦﷮′﷯− 1﷯ + 𝑥 + 𝑦 𝑦﷮′﷯ ﷮ 𝑦﷮′﷯ − 1﷯﷯﷮2﷯+ 𝑦 𝑦﷮′﷯− 1﷯ − 𝑥 − 𝑦 𝑦﷮′﷯ ﷮ 𝑦﷮′﷯ − 1﷯﷯﷮2﷯= 𝑥 + 𝑦 𝑦﷮′﷯ ﷮ 𝑦﷮′﷯ − 1﷯﷯﷮2﷯ 𝑥 𝑦﷮′﷯ − 𝑥 + 𝑥 + 𝑦 𝑦﷮′﷯ ﷮ 𝑦﷮′﷯ − 1﷯﷯﷮2﷯+ −𝑥 − 𝑦 ﷮ 𝑦﷮′﷯ − 1﷯﷯﷮2﷯= 𝑥 + 𝑦 𝑦﷮′﷯ ﷮ 𝑦﷮′﷯ − 1﷯﷯﷮2﷯ (𝑥 + 𝑦) 𝑦﷮′﷯ ﷮ 𝑦﷮′﷯ − 1﷯﷯﷮2﷯+ −(𝑥 + 𝑦) ﷮ 𝑦﷮′﷯ − 1﷯﷯﷮2﷯= 𝑥 + 𝑦 𝑦﷮′﷯ ﷮ 𝑦﷮′﷯ − 1﷯﷯﷮2﷯ (𝑥 + 𝑦) ﷮2﷯ ( 𝑦﷮′﷯)﷮2﷯+ (𝑥 + 𝑦) ﷮2﷯= 𝑥 + 𝑦 𝑦﷮′﷯﷯﷮2﷯ (𝒙 + 𝒚) ﷮𝟐﷯ ( 𝒚﷮′﷯)﷮𝟐﷯ + 𝟏﷯= 𝒙 + 𝒚 𝒚﷮′﷯﷯﷮𝟐﷯ which is the required differential equation

About the Author

CA Maninder Singh's photo - Expert in Practical Accounts, Taxation and Efiling
CA Maninder Singh
CA Maninder Singh is a Chartered Accountant for the past 8 years. He provides courses for Practical Accounts, Taxation and Efiling at teachoo.com .
Jail