Subscribe to our Youtube Channel - https://you.tube/teachoo
Last updated at Dec. 24, 2018 by Teachoo
Transcript
Example 10 Find the general solution of the differential equation ππ¦/ππ₯=(1 + π¦^2)/(1 + π₯^2 ) ππ¦/ππ₯=(1 + π¦^2)/(1 + π₯^2 ) ππ¦/(1 + π¦2)=ππ₯/(1 + π₯^2 ) Integrating both sides β«1βππ¦/(1 + π¦^2 ) = β«1βππ¦/(1 + π₯^2 ) (β«1β1/(1 + π₯^2 ) dx = tanβ1 x + c) tanβ1 y = tanβ1 x + c tanβ1 y = tanβ1 x + c is the general solution of the given equation
Examples
Example 2
Example 3
Example 4 Not in Syllabus - CBSE Exams 2021
Example 5 Not in Syllabus - CBSE Exams 2021
Example 6 Important Not in Syllabus - CBSE Exams 2021
Example 7 Not in Syllabus - CBSE Exams 2021
Example 8 Not in Syllabus - CBSE Exams 2021
Example 9
Example 10 You are here
Example 11
Example 12
Example 13
Example 14 Important
Example 15 Important
Example 16
Example 17 Important
Example 18
Example 19
Example 20
Example 21 Not in Syllabus - CBSE Exams 2021
Example 22 Important
Example 23 Important
Example 24
Example 25 Not in Syllabus - CBSE Exams 2021
Example 26
Example 27 Important
Example 28 Important Not in Syllabus - CBSE Exams 2021
About the Author