# Example 12 - Chapter 9 Class 12 Differential Equations

Last updated at April 16, 2024 by Teachoo

Examples

Example 1 (i)

Example 1 (ii) Important

Example 1 (iii) Important

Example 2

Example 3 Important

Example 4

Example 5

Example 6

Example 7 Important

Example 8

Example 9 Important

Example 10 Important

Example 11

Example 12 Important You are here

Example 13 Important

Example 14

Example 15 Important

Example 16

Example 17 Important

Example 18 Important

Example 19

Example 20

Example 21 Important

Example 22 Important

Question 1 Deleted for CBSE Board 2024 Exams

Question 2 Deleted for CBSE Board 2024 Exams

Question 3 Important Deleted for CBSE Board 2024 Exams

Question 4 Deleted for CBSE Board 2024 Exams

Question 5 Deleted for CBSE Board 2024 Exams

Question 6 Deleted for CBSE Board 2024 Exams

Chapter 9 Class 12 Differential Equations

Serial order wise

Last updated at April 16, 2024 by Teachoo

Example 12 Show that the differential equation 2𝑦𝑒^(𝑥/𝑦) 𝑑𝑥+(𝑦−2𝑥𝑒^(𝑥/𝑦) )𝑑𝑦=0 is homogeneous and find its particular solution , given that, 𝑥=0 when 𝑦=1 2𝑦𝑒^(𝑥/𝑦) 𝑑𝑥+(𝑦−2𝑥𝑒^(𝑥/𝑦) )𝑑𝑦 = 0 Step 1: Finding 𝑑𝑥/𝑑𝑦 2𝑦𝑒^(𝑥/𝑦) 𝑑𝑥+(𝑦−2𝑥𝑒^(𝑥/𝑦) )𝑑𝑦=0 2𝑦𝑒^(𝑥/𝑦) 𝑑𝑥=−(𝑦−2𝑥𝑒^(𝑥/𝑦) )𝑑𝑦 2𝑦𝑒^(𝑥/𝑦) 𝑑𝑥=(2𝑥𝑒^(𝑥/𝑦)−𝑦)𝑑𝑦 Since the equation is in the form 𝑥/𝑦 , we will take 𝑑𝑥/𝑑𝑦 Instead of 𝑑𝑦/𝑑𝑥 𝒅𝒙/𝒅𝒚=((𝟐𝒙𝒆^(𝒙/𝒚) − 𝒚))/(𝟐𝒚𝒆^(𝒙/𝒚) ) Step 2: Put F(𝑥 , 𝑦)=𝑑𝑥/𝑑𝑦 and find F(𝜆𝑥 ,𝜆𝑦) F(𝑥 , 𝑦)= (2𝑥𝑒^(𝑥/𝑦) − 𝑦)/(2𝑦𝑒^(𝑥/𝑦) ) Finding F(𝝀𝒙 ,𝝀𝒚) F(𝜆𝑥 ,𝜆𝑦)=(2 (𝜆𝑥) 〖 𝑒〗^(𝜆𝑥/𝜆𝑦 −𝜆𝑦))/(2𝜆𝑦 〖 𝑒〗^(𝜆𝑥/𝜆𝑦 ) )=𝜆(2𝑥𝑒^(𝑥/𝑦) − 𝑦)/(𝜆 . 2𝑦 𝑒^(𝑥/𝑦) ) =(2𝑥𝑒^(𝑥/𝑦) − 𝑦)/(2𝑦 𝑒^(𝑥/𝑦) ) = F (𝒙 , 𝒚) So, F(𝜆𝑥 ,𝜆𝑦)= F(𝑥 , 𝑦) = 𝜆° F(𝑥 , 𝑦) Thus , F(𝑥 ,𝑦) is a homogeneous function of degree zero Therefore given differential equation is homogeneous differential equation Step 3: Solving 𝑑𝑥/𝑑𝑦 by Putting 𝑥=𝑣𝑦 𝑑𝑥/𝑑𝑦=(2𝑥 𝑒^(𝑥/𝑦) − 𝑦)/(2𝑦 𝑒^(𝑥/𝑦) ) Put 𝒙=𝒗𝒚 Diff. w.r.t. 𝑦 𝑑𝑥/𝑑𝑦=𝑑/𝑑𝑦 (𝑣𝑦) 𝑑𝑥/𝑑𝑦=𝑦 . 𝑑𝑣/𝑑𝑦+𝑣 𝑑𝑦/𝑑𝑦 𝒅𝒙/𝒅𝒚=𝒚 . 𝒅𝒗/𝒅𝒚+𝒗 Putting values of 𝑑𝑥/𝑑𝑦 and x in (1) 𝑑𝑥/𝑑𝑦=(2𝑥𝑒^(𝑥/𝑦) − 𝑦)/(2𝑦 𝑒^(𝑥" " /𝑦) ) 𝒗+𝒚 𝒅𝒗/𝒅𝒚=(𝟐𝒗 𝒆^𝒗 − 𝟏)/(𝟐〖 𝒆〗^𝒗 ) 𝑦 𝑑𝑣/𝑑𝑦=(2𝑣 𝑒^𝑣 − 1)/(2〖 𝑒〗^𝑣 )−𝑣 (𝑦 𝑑𝑣)/𝑑𝑦=(2𝑣𝑒^𝑣 − 1 − 2𝑣𝑒^𝑣)/(2〖 𝑒〗^𝑣 ) 𝑦 𝑑𝑣/𝑑𝑦=(−1)/(2〖 𝑒〗^𝑣 ) 𝟐〖 𝒆〗^𝒗 𝒅𝒗=(−𝒅𝒚)/( 𝒚) Integrating Both Sides ∫1▒〖2〖 𝑒〗^𝑣 𝑑𝑣〗=∫1▒(−𝑑𝑦)/( 𝑦) 𝟐〖 𝒆〗^𝒗=−𝐥𝐨𝐠|𝒚|+𝒄 Putting back 𝑣=𝑥/𝑦 2𝑒^(𝑥/𝑦)=−𝑙𝑜𝑔|𝑦|+𝑐 2𝑒^(𝑥/𝑦)+𝑙𝑜𝑔|𝑦|=𝑐 Given that at 𝒙=𝟎 , 𝒚=𝟏 Putting 𝑥=0 and 𝑦=1 in (2) 2𝑒^(0/1)−𝑙𝑜𝑔|1|=𝑐 2 ×1+0=𝑐 𝒄=𝟐 Put Value of 𝑐 in (2) i.e., 2𝑒^(𝑥/𝑦)+𝑙𝑜𝑔|𝑦|=𝐶 𝟐𝒆^(𝒙/𝒚)+𝒍𝒐𝒈|𝒚|=𝟐" " is the particular solution of given differential equation