Check sibling questions

Example 6 - Family of ellipses having foci on x-axis, center

Example 6 - Chapter 9 Class 12 Differential Equations - Part 2
Example 6 - Chapter 9 Class 12 Differential Equations - Part 3

Get live Maths 1-on-1 Classs - Class 6 to 12


Example 6 Form the differential equation representing the family of ellipses having foci on π‘₯βˆ’π‘Žπ‘₯𝑖𝑠 is center at the origin. Ellipse whose foci is on x-axis & center at origin is π‘₯^2/π‘Ž^2 +𝑦^2/𝑏^2 =1 Differentiating both sides w.r.t. π‘₯ 𝑑/𝑑π‘₯ [π‘₯^2/π‘Ž^2 +𝑦^2/𝑏^2 ]=𝑑(1)/𝑑π‘₯ 1/π‘Ž^2 Γ—(〖𝑑(π‘₯γ€—^2))/𝑑π‘₯+1/𝑏^2 Γ—(〖𝑑(𝑦〗^2))/𝑑π‘₯=0 Since it has two variables, we will differentiate twice π‘₯^2/π‘Ž^2 +𝑦^2/𝑏^2 =1 1/π‘Ž^2 Γ—2π‘₯+1/𝑏^2 Γ—(2𝑦 . 𝑑𝑦/𝑑π‘₯)=0 2π‘₯/π‘Ž^2 +2𝑦/𝑏^2 𝑑𝑦/𝑑π‘₯=0 2𝑦/𝑏^2 𝑑𝑦/𝑑π‘₯=(βˆ’2π‘₯)/γ€– π‘Žγ€—^2 𝑦/𝑏^2 𝑑𝑦/𝑑π‘₯=(βˆ’π‘₯)/γ€– π‘Žγ€—^2 𝑦/π‘₯ 𝑑𝑦/𝑑π‘₯= (βˆ’π‘^2)/γ€– π‘Žγ€—^2 𝑦/π‘₯ 𝑦^β€²= (βˆ’π‘^2)/γ€– π‘Žγ€—^2 Again differentiating both sides 𝑑(𝑦/π‘₯)/𝑑π‘₯. 𝑦^β€²+𝑦/π‘₯ (𝑑(𝑦^β€²))/𝑑π‘₯=𝑑/𝑑π‘₯ ((βˆ’ 𝑏^2)/( π‘Ž^2 )) [𝑑𝑦/𝑑π‘₯ . π‘₯ βˆ’ 𝑦 .𝑑π‘₯/𝑑π‘₯]/π‘₯^2 𝑦^β€² +𝑦/π‘₯ ×𝑦′′=0 [𝑦^β€² π‘₯ βˆ’ 𝑦]/π‘₯^2 𝑦^β€² +𝑦/π‘₯×𝑦′′=0 Multiplying x2 both sides π‘₯^2Γ—[𝑦^β€² π‘₯ βˆ’ 𝑦]/π‘₯^2 𝑦^β€² +π‘₯^2×𝑦/π‘₯×𝑦′′=π‘₯^2Γ—0 [𝑦^β€² π‘₯βˆ’π‘¦] 𝑦^β€²+π‘₯𝑦𝑦^β€²β€²=0 γ€–γ€–π‘₯𝑦〗^β€²γ€—^2βˆ’π‘¦π‘¦^β€²+π‘₯𝑦𝑦^β€²β€²=0 π‘₯𝑦𝑦^β€²β€²+γ€–γ€–π‘₯𝑦〗^β€²γ€—^2βˆ’π‘¦π‘¦^β€²=0 π’™π’š (𝒅^𝟐 π’š)/(𝒅𝒙^𝟐 ) +𝒙(π’…π’š/𝒅𝒙)^πŸβˆ’π’š π’…π’š/𝒅𝒙=𝟎 is the required differential equation

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.