


Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Examples
Example 1 (ii) Important
Example 1 (iii) Important
Example 2
Example 3 Important
Example 4
Example 5
Example 6
Example 7 Important
Example 8
Example 9 Important
Example 10 Important
Example 11
Example 12 Important
Example 13 Important
Example 14
Example 15 Important
Example 16
Example 17 Important You are here
Example 18 Important
Example 19
Example 20
Example 21 Important
Example 22 Important
Question 1 Deleted for CBSE Board 2024 Exams
Question 2 Deleted for CBSE Board 2024 Exams
Question 3 Important Deleted for CBSE Board 2024 Exams
Question 4 Deleted for CBSE Board 2024 Exams
Question 5 Deleted for CBSE Board 2024 Exams
Question 6 Deleted for CBSE Board 2024 Exams
Last updated at May 29, 2023 by Teachoo
Example 17 Find the particular solution of the differential equation ππ¦/ππ₯+π¦ cotβ‘γπ₯=2π₯+π₯^2 cotβ‘π₯(π₯β 0) γ given that π¦=0 π€βππ π₯=π/2 ππ¦/ππ₯+π¦ cotβ‘γπ₯=2π₯+π₯^2 cotβ‘π₯ γ Differential equation is of the form ππ¦/ππ₯+ππ¦=π where P = cot x & Q = 2x + x2 cot x IF = π^β«1βγπ ππ₯γ IF = π^β«1βγcotβ‘π₯ ππ₯γ IF = γπ^logβ‘sinβ‘π₯ γ^" " IF = sin x Solution is y (IF) =β«1βγ(πΓπΌπΉ) ππ₯+πγ y sin x = β«1βγsinβ‘π₯Γ(2π₯+π₯^(2 ) cotβ‘π₯ ) ππ₯γ + C y sin x = β«1βγ(2π₯ sinβ‘π₯+π₯^(2 ) sinβ‘γπ₯ cotβ‘π₯ γ ) ππ₯γ + C y sinβ‘π₯ = β«1βγ2π₯ sinβ‘π₯ ππ₯+γ β«1βγπ₯^2 sinβ‘π₯ cotβ‘π₯ ππ₯+γ πΆ y sinβ‘π₯ = 2β«1βγπ¬π’π§β‘π (π) π πγ+β«1βγπ₯^2 sinβ‘π₯ cotβ‘π₯ ππ₯+γ πΆ y sinβ‘π₯ = 2 [π¬π’π§β‘π β«1βγπ π πβγ β«1βγ[πππβ‘γπ β«1βγπ π πγ γ ] π πγ] + β«1βγπ₯^2 sinβ‘π₯ γ cotβ‘π₯ dx + C Integrating by parts with β«1βγπ(π₯) π(π₯) ππ₯=π(π₯) β«1βγπ(π₯) ππ₯ ββ«1βγ[π^β² (π₯) β«1βγπ(π₯) ππ₯] ππ₯γγγγ Take f (x) = sin x & g (x) = π₯ y sinβ‘π₯ = 2 [π¬π’π§β‘π β«1βγπ π πβγ β«1βγ[πππβ‘γπ β«1βγπ π πγ γ ] π πγ] + β«1βγπ₯^2 sinβ‘π₯ γ cotβ‘π₯ dx + C y sinβ‘π₯ = 2 [sinβ‘π₯ [π₯^2/2]ββ«1βγπππβ‘γπ γ [π₯^2/2]π πγ] + β«1βγπ₯^2 sinβ‘π₯ γ cotβ‘π₯ dx y sin x = x2sin x β β«1βπ₯^2 cos x dx + β«1βγπ₯^2 sinβ‘π₯ γ cotβ‘π₯ dx + C y sin x = x2sin x β β«1βπ₯^2 cos x dx + β«1βγπ₯^2 sinβ‘π₯ γΓcosβ‘π₯/sinβ‘π₯ dx + C y sin x = x2sin x β β«1βπ₯^2 cos x dx + β«1βγπ₯^2 cosβ‘π₯ γ dx + C y sin x = x2 sin x + C Given that y = 0 when x = π/2 Putting π=π /π and y = 0 in (1) (0) sin π/2=(π/2)^2 sinβ‘γ(π/2)+Cγ β¦(1) 0 =π^2/4 (1)+C γβπγ^2/4=C Putting value in C in (1) y sin x = x2 sin x + C y sin x = π₯^2 sinβ‘γπ₯ βγ π^2/4 Dividing both sides by sin x (π¦ sinβ‘π₯)/sinβ‘π₯ =(π₯^2 sinβ‘π₯)/sinβ‘π₯ βπ^2/(4 sinβ‘π₯ ) π=π^πβπ ^π/γπ π¬π’π§γβ‘π where sinβ‘γπ₯β 0γ