Check sibling questions

Example 2 - Verify that y = e-3x is a solution of y'' + y' - 6y = 0

Example 2 - Chapter 9 Class 12 Differential Equations - Part 2
Example 2 - Chapter 9 Class 12 Differential Equations - Part 3


Transcript

Example 2 Verify that the function 𝑦=𝑒^(βˆ’3π‘₯) is a solution of the differential equation (𝑑^2 𝑦)/(𝑑π‘₯^2 )+𝑑𝑦/𝑑π‘₯βˆ’6𝑦=0 𝑦=𝑒^(βˆ’3π‘₯) π’…π’š/𝒅𝒙=𝑑(𝑒^(βˆ’3π‘₯) )/𝑑π‘₯ 𝑑𝑦/𝑑π‘₯=γ€–βˆ’3 𝑒〗^(βˆ’3π‘₯) (𝒅^𝟐 π’š)/(𝒅𝒙^𝟐 )=𝑑/𝑑π‘₯ (𝑑𝑦/𝑑π‘₯) =𝑑(γ€–βˆ’3 𝑒〗^(βˆ’3π‘₯) )/𝑑π‘₯ =βˆ’3 𝑑(𝑒^(βˆ’3π‘₯) )/𝑑π‘₯ =βˆ’3 Γ— (γ€–βˆ’3 𝑒〗^(βˆ’3π‘₯) ) = γ€–9 𝑒〗^(βˆ’3π‘₯) Now, we have to verify (𝑑^2 𝑦)/(𝑑π‘₯^2 )+𝑑𝑦/𝑑π‘₯βˆ’6𝑦=0 Solving L.H.S (𝑑^2 𝑦)/(𝑑π‘₯^2 )+𝑑𝑦/𝑑π‘₯βˆ’6𝑦 Putting values = γ€–9 𝑒〗^(βˆ’3π‘₯)+(βˆ’3𝑒^(βˆ’3π‘₯) )βˆ’6(𝑒^(βˆ’3π‘₯) ) =γ€–9 𝑒〗^(βˆ’3π‘₯)βˆ’3𝑒^(βˆ’3π‘₯)βˆ’6𝑒^(βˆ’3π‘₯) =γ€–9 𝑒〗^(βˆ’3π‘₯)βˆ’9𝑒^(βˆ’3π‘₯) =0 = R.H.S ∴ Hence Verified

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 12 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.