Check sibling questions

Example 2 - Verify that y = e-3x is a solution of y'' + y' - 6y = 0

Example 2 - Chapter 9 Class 12 Differential Equations - Part 2
Example 2 - Chapter 9 Class 12 Differential Equations - Part 3

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class


Example 2 Verify that the function 𝑦=𝑒^(βˆ’3π‘₯) is a solution of the differential equation (𝑑^2 𝑦)/(𝑑π‘₯^2 )+𝑑𝑦/𝑑π‘₯βˆ’6𝑦=0 𝑦=𝑒^(βˆ’3π‘₯) π’…π’š/𝒅𝒙=𝑑(𝑒^(βˆ’3π‘₯) )/𝑑π‘₯ 𝑑𝑦/𝑑π‘₯=γ€–βˆ’3 𝑒〗^(βˆ’3π‘₯) (𝒅^𝟐 π’š)/(𝒅𝒙^𝟐 )=𝑑/𝑑π‘₯ (𝑑𝑦/𝑑π‘₯) =𝑑(γ€–βˆ’3 𝑒〗^(βˆ’3π‘₯) )/𝑑π‘₯ =βˆ’3 𝑑(𝑒^(βˆ’3π‘₯) )/𝑑π‘₯ =βˆ’3 Γ— (γ€–βˆ’3 𝑒〗^(βˆ’3π‘₯) ) = γ€–9 𝑒〗^(βˆ’3π‘₯) Now, we have to verify (𝑑^2 𝑦)/(𝑑π‘₯^2 )+𝑑𝑦/𝑑π‘₯βˆ’6𝑦=0 Solving L.H.S (𝑑^2 𝑦)/(𝑑π‘₯^2 )+𝑑𝑦/𝑑π‘₯βˆ’6𝑦 Putting values = γ€–9 𝑒〗^(βˆ’3π‘₯)+(βˆ’3𝑒^(βˆ’3π‘₯) )βˆ’6(𝑒^(βˆ’3π‘₯) ) =γ€–9 𝑒〗^(βˆ’3π‘₯)βˆ’3𝑒^(βˆ’3π‘₯)βˆ’6𝑒^(βˆ’3π‘₯) =γ€–9 𝑒〗^(βˆ’3π‘₯)βˆ’9𝑒^(βˆ’3π‘₯) =0 = R.H.S ∴ Hence Verified

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.