Check sibling questions

Example 27 - Solve (x dy - ydx) y sin (y/x) = (ydx + xdy)

Example 27 - Chapter 9 Class 12 Differential Equations - Part 2
Example 27 - Chapter 9 Class 12 Differential Equations - Part 3 Example 27 - Chapter 9 Class 12 Differential Equations - Part 4 Example 27 - Chapter 9 Class 12 Differential Equations - Part 5

Get live Maths 1-on-1 Classs - Class 6 to 12


Transcript

Example 27 Solve the differential equation (π‘₯ π‘‘π‘¦βˆ’π‘¦ 𝑑π‘₯)𝑦 𝑠𝑖𝑛(𝑦/π‘₯)=(𝑦 𝑑π‘₯+π‘₯ 𝑑𝑦)π‘₯ cos⁑(𝑦/π‘₯) (π‘₯ π‘‘π‘¦βˆ’π‘¦ 𝑑π‘₯)𝑦 𝑠𝑖𝑛(𝑦/π‘₯)=(𝑦 𝑑π‘₯+π‘₯ 𝑑𝑦)π‘₯ cos⁑(𝑦/π‘₯) π‘₯ 𝑦 sin⁑〖(𝑦/π‘₯)π‘‘π‘¦βˆ’π‘¦^2 𝑠𝑖𝑛(𝑦/π‘₯) γ€— 𝑑π‘₯=π‘₯𝑦 cos⁑〖(𝑦/π‘₯)𝑑π‘₯+π‘₯^2 γ€— cos⁑(𝑦/π‘₯)𝑑𝑦 [π‘₯ 𝑦 sin⁑〖(𝑦/π‘₯)βˆ’π‘₯^2 π‘π‘œπ‘ (𝑦/π‘₯) γ€— ]𝑑𝑦=[π‘₯𝑦 cos⁑〖(𝑦/π‘₯)+𝑦^2 γ€— sin⁑(𝑦/π‘₯) ]𝑑π‘₯ 𝑑𝑦/𝑑π‘₯ = (π‘₯𝑦 cos⁑〖(𝑦/π‘₯) + 𝑦^2 sin⁑(𝑦/π‘₯) γ€—)/(π‘₯𝑦 sin⁑〖(𝑦/π‘₯) βˆ’ π‘₯^2 π‘π‘œπ‘ (𝑦/π‘₯)γ€— ) Dividing numerator & denominator by x2 𝑑𝑦/𝑑π‘₯ = (𝑦/π‘₯ cos⁑〖(𝑦/π‘₯) + (𝑦/π‘₯)^2 cos⁑(𝑦/π‘₯) γ€—)/(𝑦/π‘₯ sin⁑〖(𝑦/π‘₯) βˆ’ cos⁑(𝑦/π‘₯) γ€— ) Putting y = vx. Differentiating w.r.t. x 𝑑𝑦/𝑑π‘₯ = π‘₯ 𝑑𝑣/𝑑π‘₯ + v Putting value of 𝑑𝑦/𝑑π‘₯ and y in (1) 𝑑𝑦/𝑑π‘₯ = (𝑦/π‘₯ cos⁑〖(𝑦/π‘₯) + (𝑦/π‘₯)^2 cos⁑(𝑦/π‘₯) γ€—)/(𝑦/π‘₯ sin⁑〖(𝑦/π‘₯) βˆ’ cos⁑(𝑦/π‘₯) γ€— ) v + (π‘₯ 𝑑𝑣)/𝑑π‘₯=(𝑣π‘₯/π‘₯ cos⁑〖(𝑣π‘₯/π‘₯) + (𝑣^2 π‘₯^2)/π‘₯^2 sin⁑(𝑣π‘₯/π‘₯) γ€—)/(𝑣π‘₯/π‘₯ sin⁑〖(𝑣π‘₯/π‘₯) βˆ’ π‘π‘œπ‘ (𝑣π‘₯/π‘₯)γ€— ) v + (π‘₯ 𝑑𝑣)/𝑑π‘₯ = (𝑣 cos⁑〖𝑣 + 𝑣^2 sin⁑𝑣 γ€—)/(𝑣 sin⁑〖𝑣 βˆ’ cos⁑𝑣 γ€— ) x ( 𝑑𝑣)/𝑑π‘₯ = (𝑣 cos⁑〖𝑣 + 𝑣^2 sin⁑𝑣 γ€—)/(𝑣 sin⁑〖𝑣 βˆ’ cos⁑𝑣 γ€— ) βˆ’ v x ( 𝑑𝑣)/𝑑π‘₯ = (𝑣 cos⁑〖𝑣 + 𝑣^2 sin⁑〖𝑣 βˆ’ 𝑣(𝑣 sin⁑〖𝑣 βˆ’ cos⁑〖𝑣)γ€— γ€— γ€— γ€—)/(𝑣 sin⁑〖𝑣 βˆ’ cos⁑𝑣 γ€— ) x ( 𝑑𝑣)/𝑑π‘₯ = (𝑣 cos⁑〖𝑣 + 𝑣^2 sin⁑〖𝑣 βˆ’ 𝑣^2 sin 𝑣〗 + 𝑣 cos⁑𝑣 γ€—)/(𝑣 sin⁑〖𝑣 βˆ’ cos⁑𝑣 γ€— ) ( π‘₯ 𝑑𝑣)/𝑑π‘₯ = (2𝑣 cos⁑𝑣)/(𝑣 sin⁑〖𝑣 βˆ’ cos⁑𝑣 γ€— ) ((𝑣 sin⁑〖𝑣 βˆ’ cos⁑𝑣 γ€—)/γ€–v cos〗⁑𝑣 )𝑑𝑣=2 𝑑π‘₯/π‘₯ ((𝑣 sin⁑𝑣)/γ€–v cos〗⁑𝑣 βˆ’cos⁑𝑣/γ€–v cos〗⁑𝑣 ) dv = 2 𝑑π‘₯/π‘₯ (tanβ‘π‘£βˆ’1/𝑣) dv = 2 𝑑π‘₯/π‘₯ Integrating both sides ∫1β–’γ€–(tan⁑〖𝑣 βˆ’1/𝑣〗 )𝑑𝑣=2∫1▒𝑑π‘₯/π‘₯γ€— ∫1β–’tan⁑〖𝑣 𝑑𝑣 βˆ’ γ€— ∫1▒𝑑𝑣/𝑣 = 2 ∫1▒𝑑π‘₯/π‘₯ log |sec⁑𝑣 |βˆ’log⁑〖|𝑣|γ€— = 2 log |π‘₯| + log C log |sec⁑𝑣 |βˆ’log⁑〖|𝑣|γ€— = log |π‘₯^2 | + log C log |sec⁑𝑣/𝑣| = log π‘₯^2 + log C log |sec⁑𝑣/𝑣| = log π‘₯^2 𝑐 sec⁑𝑣/𝑣 = π‘₯^2 𝑐 Putting back value of v = 𝑦/π‘₯ γ€–sec 〗⁑(𝑦/π‘₯)/((𝑦/π‘₯) ) = π‘₯^2 𝑐 sec⁑(𝑦/π‘₯) = (𝑦/π‘₯) π‘₯^2 𝑐 sec (π’š/𝒙) = C xy (As log a – log b = log π‘Ž/𝑏 & log a + log b = log ab)

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.