Example 19 - Verify that y=c1 eax cos bx + c2 eax sin bx - Examples

part 2 - Example 19 - Examples - Serial order wise - Chapter 9 Class 12 Differential Equations
part 3 - Example 19 - Examples - Serial order wise - Chapter 9 Class 12 Differential Equations

Share on WhatsApp

Transcript

Example 19 Verify that the function 𝑦=𝑐1 𝑒^π‘Žπ‘₯ cos⁑〖𝑏π‘₯+𝑐2 𝑒^π‘Žπ‘₯ sin⁑𝑏π‘₯ γ€— , π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑐1 , 𝑐2 are arbitrary constants is a solution of the differential equation (𝑑^2 𝑦)/(𝑑π‘₯^2 )βˆ’2π‘Ž 𝑑𝑦/𝑑π‘₯+(π‘Ž^2+𝑏^2 )𝑦=0 𝑦=𝑐1 𝑒^π‘Žπ‘₯ cos⁑〖𝑏π‘₯+𝑐2 𝑒^π‘Žπ‘₯ sin⁑〖𝑏π‘₯, γ€— γ€— π’š =𝒆^𝒂𝒙 (π’„πŸ 𝒄𝒐𝒔 𝒃𝒙+ π’„πŸ π’”π’Šπ’β‘π’ƒπ’™) Differentiating w.r.t. x 𝑦^β€²=(𝑒^π‘Žπ‘₯ )^β€² (𝑐_1 cos⁑𝑏π‘₯+𝑐_2 sin⁑𝑏π‘₯ )+𝑒^π‘Žπ‘₯ (𝑐_1 cos⁑𝑏π‘₯+𝑐_2 sin⁑𝑏π‘₯ )^β€² 𝑦^β€²=π‘Žπ‘’^π‘Žπ‘₯ (𝑐_1 cos⁑𝑏π‘₯+𝑐_2 sin⁑𝑏π‘₯ )+𝑒^π‘Žπ‘₯ (γ€–βˆ’π‘γ€—_1 𝑏 sin⁑𝑏π‘₯+𝑐_2 𝑏 cos⁑𝑏π‘₯ ) 𝑦^β€²=π‘Žπ‘’^π‘Žπ‘₯ (𝑐_1 cos⁑𝑏π‘₯+𝑐_2 sin⁑𝑏π‘₯ )+𝑏𝑒^π‘Žπ‘₯ (γ€–βˆ’π‘γ€—_1 sin⁑𝑏π‘₯+𝑐_2 cos⁑𝑏π‘₯ ) Putting 𝑦 =𝑒^π‘Žπ‘₯ (𝑐1 π‘π‘œπ‘  𝑏π‘₯+ 𝑐2 sin⁑𝑏π‘₯) 𝑦^β€²=π‘Žπ‘¦+𝑏𝑒^π‘Žπ‘₯ (γ€–βˆ’π‘γ€—_1 sin⁑𝑏π‘₯+𝑐_2 cos⁑𝑏π‘₯ ) π’š^β€²βˆ’π’‚π’š=𝒃𝒆^𝒂𝒙 (γ€–βˆ’π’„γ€—_𝟏 π’”π’Šπ’β‘π’ƒπ’™+𝒄_𝟐 𝒄𝒐𝒔⁑𝒃𝒙 ) Differentiating again w.r.t x 𝑦^β€²β€²βˆ’π‘Žπ‘¦^β€²=(𝑏𝑒^π‘Žπ‘₯ )^β€² (γ€–βˆ’π‘γ€—_1 sin⁑𝑏π‘₯+𝑐_2 cos⁑𝑏π‘₯ )+𝑏𝑒^π‘Žπ‘₯ (γ€–βˆ’π‘γ€—_1 sin⁑𝑏π‘₯+𝑐_2 cos⁑𝑏π‘₯ )^β€² 𝑦^β€²β€²βˆ’π‘Žπ‘¦^β€²=π‘Žπ‘π‘’^π‘Žπ‘₯ (γ€–βˆ’π‘γ€—_1 sin⁑𝑏π‘₯+𝑐_2 cos⁑𝑏π‘₯ )+𝑏𝑒^π‘Žπ‘₯ (γ€–βˆ’π‘γ€—_1 𝑏 cos⁑𝑏π‘₯βˆ’π‘_2 𝑏 sin⁑𝑏π‘₯ ) 𝑦^β€²β€²βˆ’π‘Žπ‘¦^β€²=π‘Žπ‘π‘’^π‘Žπ‘₯ (γ€–βˆ’π‘γ€—_1 sin⁑𝑏π‘₯+𝑐_2 cos⁑𝑏π‘₯ )βˆ’π‘^2 𝒆^𝒂𝒙 (𝒄_𝟏 𝒄𝒐𝒔⁑𝒃𝒙+𝒄_𝟐 π’”π’Šπ’β‘π’ƒπ’™ ) Putting 𝑦 =𝑒^π‘Žπ‘₯ (𝑐1 π‘π‘œπ‘  𝑏π‘₯+ 𝑐2 sin⁑𝑏π‘₯) 𝑦^β€²β€²βˆ’π‘Žπ‘¦^β€²=π‘Žπ’ƒπ’†^𝒂𝒙 (γ€–βˆ’π’„γ€—_𝟏 π’”π’Šπ’β‘π’ƒπ’™+𝒄_𝟐 𝒄𝒐𝒔⁑𝒃𝒙 )βˆ’π‘^2 𝑦 "Putting" 𝑦^β€²βˆ’π‘Žπ‘¦=𝑏𝑒^π‘Žπ‘₯ (γ€–βˆ’π‘γ€—_1 𝑠𝑖𝑛⁑𝑏π‘₯+𝑐_2 π‘π‘œπ‘ β‘π‘π‘₯ ) 𝑦^β€²β€²βˆ’π‘Žπ‘¦^β€²=π‘Ž(𝑦^β€²βˆ’π‘Žπ‘¦)βˆ’π‘^2 𝑦 𝑦^β€²β€²βˆ’π‘Žπ‘¦^β€²=π‘Žπ‘¦^β€²βˆ’π‘Ž^2 π‘¦βˆ’π‘^2 𝑦 𝑦^β€²β€²βˆ’π‘Žπ‘¦^β€²βˆ’π‘Žπ‘¦^β€²+π‘Ž^2 𝑦+𝑏^2 𝑦=0 π’š^β€²β€²βˆ’πŸπ’‚π’š^β€²+(𝒂^𝟐+𝒃^𝟐)π’š=𝟎 Hence verified

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo