Example 10 - Show (x - y) dy/dx = x + 2y is homogeneous, solve - Examples

part 2 - Example 10 - Examples - Serial order wise - Chapter 9 Class 12 Differential Equations
part 3 - Example 10 - Examples - Serial order wise - Chapter 9 Class 12 Differential Equations
part 4 - Example 10 - Examples - Serial order wise - Chapter 9 Class 12 Differential Equations
part 5 - Example 10 - Examples - Serial order wise - Chapter 9 Class 12 Differential Equations part 6 - Example 10 - Examples - Serial order wise - Chapter 9 Class 12 Differential Equations part 7 - Example 10 - Examples - Serial order wise - Chapter 9 Class 12 Differential Equations part 8 - Example 10 - Examples - Serial order wise - Chapter 9 Class 12 Differential Equations part 9 - Example 10 - Examples - Serial order wise - Chapter 9 Class 12 Differential Equations part 10 - Example 10 - Examples - Serial order wise - Chapter 9 Class 12 Differential Equations part 11 - Example 10 - Examples - Serial order wise - Chapter 9 Class 12 Differential Equations part 12 - Example 10 - Examples - Serial order wise - Chapter 9 Class 12 Differential Equations

Share on WhatsApp

Transcript

Example 10 Show that the differential equation (π‘₯βˆ’π‘¦) 𝑑𝑦/𝑑π‘₯=π‘₯+2𝑦 is homogeneous and solve it.Step 1: Find 𝑑𝑦/𝑑π‘₯ (π‘₯βˆ’π‘¦) 𝑑𝑦/𝑑π‘₯=π‘₯+2𝑦 π’…π’š/𝒅𝒙=((𝒙 + πŸπ’š)/(𝒙 βˆ’ π’š)) Step 2: Put F(π‘₯ , 𝑦)=𝑑𝑦/𝑑π‘₯ & Find F(πœ†π‘₯ ,πœ†π‘¦) 𝑑𝑦/𝑑π‘₯=((π‘₯ + 2𝑦)/(π‘₯ βˆ’ 𝑦)) Put F(π‘₯ , 𝑦)=((π‘₯ + 2𝑦)/(π‘₯ βˆ’ 𝑦)) Finding F(π›Œπ± ,π›Œπ²) F(πœ†π‘₯ ,πœ†π‘¦)=(πœ†π‘₯ + 2(πœ†π‘¦))/(πœ†π‘₯ βˆ’πœ†π‘¦) =πœ†(π‘₯ + 2𝑦)/(πœ† (π‘₯ βˆ’ 𝑦) ) =((π‘₯ + 2𝑦))/(π‘₯ βˆ’ 𝑦) = F(π‘₯ , 𝑦) Thus , F(πœ†π‘₯ ,πœ†π‘¦)="F" (π‘₯ , 𝑦)" " =𝝀°" F" (𝒙 , π’š)" " Thus , "F" (π‘₯ , 𝑦)" is Homogeneous function of degree zero" Therefore, the given Differential Equation is Homogeneous differential Equation Step 3: Solving 𝑑𝑦/𝑑π‘₯ by Putting 𝑦=𝑣π‘₯ 𝑑𝑦/𝑑π‘₯=((π‘₯ + 2𝑦)/(π‘₯ βˆ’ 𝑦)) Let π’š=𝒗𝒙 So , 𝑑𝑦/𝑑π‘₯=𝑑(𝑣π‘₯)/𝑑π‘₯ 𝑑𝑦/𝑑π‘₯=𝑑𝑣/𝑑π‘₯ . π‘₯+𝑣 𝑑π‘₯/𝑑π‘₯ π’…π’š/𝒅𝒙=𝒅𝒗/𝒅𝒙 𝒙+𝒗 Putting 𝑑𝑦/𝑑π‘₯ π‘Žnd 𝑦/π‘₯ 𝑖𝑛 (1) 𝑑𝑦/𝑑π‘₯=(π‘₯ + 2𝑦)/(π‘₯ βˆ’ 𝑦) 𝒅𝒗/𝒅𝒙 𝒙+𝒗= (𝒙 + πŸπ’—π’™)/(𝒙 βˆ’ 𝒗𝒙) 𝑑𝑣/𝑑π‘₯ π‘₯+𝑣= π‘₯(1 + 2𝑣)/π‘₯(1 βˆ’ 𝑣) 𝑑𝑣/𝑑π‘₯ π‘₯+𝑣= (1 + 2𝑣)/(1 βˆ’ 𝑣) 𝑑𝑣/𝑑π‘₯ π‘₯= (1 + 2𝑣)/(1 βˆ’ 𝑣)βˆ’π‘£ 𝑑𝑣/𝑑π‘₯ . π‘₯= (1 + 2𝑣 βˆ’ 𝑣 (1 βˆ’ 𝑣))/(1 βˆ’ 𝑣) 𝑑𝑣/𝑑π‘₯ . π‘₯= (1 + 2𝑣 βˆ’ 𝑣 +γ€– 𝑣〗^2)/(1 βˆ’ 𝑣) 𝑑𝑣/𝑑π‘₯ . π‘₯= (γ€– 𝑣〗^2 + 𝑣 + 1)/(1 βˆ’ 𝑣) 𝑑𝑣/𝑑π‘₯ π‘₯=βˆ’((γ€– 𝑣〗^2 + 𝑣 + 1)/(𝑣 βˆ’ 1)) 𝒅𝒗((𝒗 βˆ’ 𝟏)/(𝒗^(𝟐 )+ 𝒗 + 𝟏))=(βˆ’π’…π’™)/𝒙 Integrating Both Sides ∫1β–’γ€–(𝑣 βˆ’ 1)/(𝑣^2 + 𝑣 + 1) 𝑑𝑣=∫1β–’(βˆ’π‘‘π‘₯)/π‘₯γ€— ∫1β–’γ€–(𝑣 βˆ’ 1)/(𝑣^2 + 𝑣 + 1) 𝑑𝑣=βˆ’βˆ«1▒𝑑π‘₯/π‘₯γ€— ∫1β–’γ€–((𝒗 βˆ’ 𝟏) 𝒅𝒗)/(𝒗^𝟐 + 𝒗 + 𝟏) 𝒅𝒗〗=βˆ’π₯𝐨𝐠⁑〖|𝒙|γ€— + 𝒄 We can write 𝑣^2+𝑣+1 = 𝑣^2 + 1/2 . 2v + (1/2)^2+1βˆ’(1/2)^2 =(𝑣+1/2)^2 + 1 – 1/4 =(𝑣+1/2)^2+3/4 Putting 𝒗^𝟐+𝒗+𝟏=(𝑣+1/2)^2+3/4 and π’—βˆ’πŸ=𝑣+𝟏/πŸβˆ’πŸ/πŸβˆ’1 =(𝑣+1/2)βˆ’3/2 ∫1β–’((𝑣 + 1/2) βˆ’ 3/2)/((𝑣 + 1/2)^2+ 3/4) 𝑑𝑣=βˆ’log⁑〖|π‘₯|+𝑐〗 ∫1β–’(𝑣 + 1/2)/((𝑣 + 1/2)^2+ 3/4) π‘‘π‘£βˆ’3/2 ∫1β–’1/((𝑣 + 1/2)^2+ 3/4) 𝑑𝑣=βˆ’log⁑〖|π‘₯|+𝑐〗 So, our equation becomes I1 – πŸ‘/𝟐I2 = βˆ’log⁑〖|π‘₯|γ€—+𝑐 Solving π‘°πŸ 𝐼1=∫1β–’((𝑣 + 1/2))/((𝑣 + 1/2)^2+ 3/4) 𝑑𝑣 Put (𝒗+ 𝟏/𝟐)^𝟐+ πŸ‘/πŸ’ =𝒕 Diff. w.r.t. 𝑣 𝑑((𝑣 + 1/2)^2+ 3/4)/𝑑𝑣=𝑑𝑑/𝑑𝑣 2(𝑣+1/2)=𝑑𝑑/𝑑𝑣 𝑑𝑣=𝑑𝑑/2(𝑣 + 1/2) Putting value of v & dv in I1 𝐼1=∫1β–’((𝑣 + 1/2))/𝑑 ×𝑑𝑑/2(𝑣 + 1/2) =1/2 ∫1▒𝑑𝑑/𝑑 =1/2 log⁑ |𝑑| Putting back 𝑑=(𝑣+ 1/2)^2+3/4 =1/2 π‘™π‘œπ‘”|(𝑣+ 1/2)^2+3/4| =1/2 π‘™π‘œπ‘”|𝑣^2+2𝑣 Γ— 1/2 + 1/4 + 3/4| =𝟏/𝟐 π’π’π’ˆβ‘γ€– |𝒗^𝟐+𝒗+𝟏|γ€— Solving π‘°πŸ π‘°πŸ=∫1▒𝑑𝑣/((𝑣 + 1/2)^2+3/4) =∫1▒𝒅𝒗/((𝒗 + 𝟏/𝟐)^𝟐+(βˆšπŸ‘/𝟐)^𝟐 ) Using ∫1▒〖𝑑π‘₯/(π‘₯^2 + π‘Ž^2 )=(1 )/π‘Ž γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1)⁑〖π‘₯/π‘Žγ€— γ€— where x = v + 1/2 and a = √3/2 =1/(√3/2) tan^(βˆ’1)⁑〖((𝑣 + 1/2))/(√3/2)γ€— =2/√3 tan^(βˆ’1)⁑〖2(𝑣 + 1/2)/√3γ€— =𝟐/βˆšπŸ‘ 〖𝒕𝒂𝒏〗^(βˆ’πŸ)⁑((πŸπ’— + 𝟏)/βˆšπŸ‘) From (2) I1 – πŸ‘/𝟐I2 = βˆ’log⁑〖|π‘₯|+𝑐〗 1/2 log⁑ |𝑣^2+𝑣+1|βˆ’3/2 Γ—2/√3 tan^(βˆ’1)⁑((2𝑣 +1)/√3) = βˆ’log⁑〖|π‘₯|+𝑐〗 1/2 log⁑ |𝑣^2+𝑣+1|βˆ’βˆš3 tan^(βˆ’1)⁑((2𝑣 +1)/√3) = βˆ’log⁑〖|π‘₯|+𝑐〗 Replacing v by (𝑦 )/π‘₯ 1/2 π‘™π‘œπ‘”|(𝑦/π‘₯)^2+𝑦/π‘₯+1|βˆ’βˆš3 tan^(βˆ’1)⁑((2𝑦/π‘₯ + 1)/√3) = βˆ’log⁑〖|π‘₯|+𝑐〗 1/2 π‘™π‘œπ‘”|𝑦^2/π‘₯^2 +𝑦/π‘₯+1|βˆ’βˆš3 tan^(βˆ’1)⁑((2𝑦 + π‘₯)/(√3 π‘₯))=βˆ’π‘™π‘œπ‘”|π‘₯|+𝑐 1/2 π‘™π‘œπ‘”|𝑦^2/π‘₯^2 +𝑦/π‘₯+1|+π‘™π‘œπ‘”|π‘₯|=√3 tan^(βˆ’1)⁑((2𝑦 + π‘₯)/(√3 π‘₯))+𝑐 Multiplying Both Sides By 2 π’π’π’ˆ|π’š^𝟐/𝒙^𝟐 +π’š/𝒙+𝟏|+𝟐 π’π’π’ˆ|𝒙|=𝟐 βˆšπŸ‘ 〖𝒕𝒂𝒏〗^(βˆ’πŸ)⁑((πŸπ’š + 𝒙)/(βˆšπŸ‘ 𝒙))+πŸπ’„ π‘™π‘œπ‘”|𝑦^2/π‘₯^2 +𝑦/π‘₯+1|+π‘™π‘œπ‘”|π‘₯|^2=2√3 tan^(βˆ’1)⁑((2𝑦 + π‘₯)/(√3 π‘₯))+2𝑐 Put 2𝑐=𝑐 π’π’π’ˆ[|π’š^𝟐/𝒙^𝟐 +π’š/𝒙+𝟏| Γ— |𝒙^𝟐 |]=πŸβˆšπŸ‘ 〖𝒕𝒂𝒏〗^(βˆ’πŸ)⁑((πŸπ’š + 𝒙)/(βˆšπŸ‘ 𝒙))+𝒄 π‘™π‘œπ‘”|γ€–π‘₯^2 𝑦〗^2/π‘₯^2 +(π‘₯^2 𝑦)/π‘₯+π‘₯^2 |=2√3 tan^(βˆ’1)⁑((π‘₯ + 2𝑦)/(√3 π‘₯))+𝑐 π’π’π’ˆ|𝒙^𝟐+π’™π’š+π’š^𝟐 |=πŸβˆšπŸ‘ 〖𝒕𝒂𝒏〗^(βˆ’πŸ)⁑((𝒙 + πŸπ’š)/(βˆšπŸ‘ 𝒙))+𝒄

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo