# Misc 21 - Chapter 5 Class 12 Continuity and Differentiability

Last updated at May 29, 2018 by Teachoo

Last updated at May 29, 2018 by Teachoo

Transcript

Misc 21 Does there exist a function which is continuous everywhere but not differentiable at exactly two points? Justify your answer. Consider the function 𝑓 𝑥= 𝑥+ 𝑥−1 𝑓 is continuous every where , but it is not differentiable at 𝑥 = 0 & 𝑥 = 1 . 𝑓 𝑥= −𝑥− 𝑥−1 𝑥≤0𝑥− 𝑥−1 0<𝑥<1𝑥+ 𝑥−1 𝑥≥1 = −2𝑥+1 𝑥≤0 1 0<𝑥<12𝑥−1 𝑥≥1 Checking continuity Case 1 :- At 𝑥<0 𝑓 𝑥=−2𝑥+1 𝑓 𝑥 is polynomial ⇒ 𝑓 𝑥 is continuous Case 2 :- At 𝑥>1 𝑓 𝑥=2𝑥−1 𝑓 𝑥 is polynomial ⇒ 𝑓 𝑥 is continuous Case 3 :- At 0<𝑥<1 𝑓 𝑥=1 𝑓 𝑥 is constant, ⇒ 𝑓 𝑥 is continuous Case 4 :- At 𝑥=0 𝑓 𝑥 = −2𝑥+1 𝑥≤0 1 0<𝑥<12𝑥−1 𝑥≥1 A function is continuous at 𝑥=0 if LHL = RHL = 𝑓 0 i.e. lim𝑥 → 0− 𝑓 𝑥 = lim𝑥 → 0+ 𝑓 𝑥 = 𝑓 0 & 𝑓 𝑥= −2𝑥+1 𝑓 0= −2 0+1= 1 Hence LHL = RHL = f (0) ⇒ 𝑓 is continuous . Case 5 :- At 𝑥=1 A function is continuous at 𝑥=1 if LHL = RHL = 𝑓 1 i.e. lim𝑥 → 1− 𝑓 𝑥 = lim𝑥 → 1+ 𝑓 𝑥 = 𝑓 1 & 𝑓 𝑥=2𝑥−1 𝑓 1=2 1−1=2−1 =1 Hence LHL = RHL = 𝑓 1 ⇒ 𝑓 is continuous at 𝑥=1 Thus 𝑓 𝑥= 𝑥+ 𝑥−1 is continuous for all value of 𝑥 . To check differentiability Case 1 :- At 𝑥<1 𝑓 𝑥=−2𝑥+1 𝑓 𝑥 is polynomial ⇒ 𝑓 𝑥 is differentiable Case 2 :- At 𝑥>1 𝑓 𝑥=2𝑥−1 𝑓 𝑥 is polynomial ⇒ 𝑓 𝑥 is differentiable Case 3 :- At 0<𝑥<1 𝑓 𝑥=1 𝑓 𝑥 is constant ⇒ 𝑓 𝑥 is differentiable Case 4 :- At 𝑥=0 We know that 𝑓 is differentiate at 𝑥 = 0 If L.H.D = R.H.D = 𝑓′ 0 i.e., limℎ → 0− 𝑓 0 − 𝑓 0 − ℎℎ = limℎ → 0+ 𝑓 0 + ℎ − 𝑓 0ℎ = 𝑓′ 𝑐

Miscellaneous

Misc 1

Misc 2

Misc 3

Misc 4

Misc 5 Important

Misc 6 Important

Misc 7 Important

Misc 8

Misc 9 Important

Misc 10

Misc 11 Important

Misc 12

Misc 13 Important

Misc 14 Important

Misc 15 Important

Misc 16 Important

Misc 17 Important

Misc 18

Misc 19 Important

Misc 20

Misc 21 You are here

Misc 22

Misc 23 Important

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.