





Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Miscellaneous
Misc 2
Misc 3
Misc 4
Misc 5 Important
Misc 6 Important
Misc 7 Important
Misc 8
Misc 9 Important
Misc 10
Misc 11 Important You are here
Misc 12
Misc 13 Important
Misc 14 Important
Misc 15 Important
Misc 16 Important
Misc 17 Important
Misc 18
Misc 19
Misc 20
Misc 21
Misc 22 Important
Question 1 Important Deleted for CBSE Board 2024 Exams
Last updated at June 5, 2023 by Teachoo
Misc 11 Differentiate w.r.t. x the function, 𝑥^(𝑥^2− 3)+(𝑥−3)𝑥^2, for 𝑥 > 3 Let 𝑦=𝑥^(𝑥^2− 3)+(𝑥−3)^(𝑥^2 ) And let 𝑢=𝑥^(𝑥^2− 3) , 𝑣 =(𝑥−3)^(𝑥^2 ) Now, 𝒚 = 𝒖+𝒗 Differentiating both sides 𝑤.𝑟.𝑡.𝑥. 𝑑𝑦/𝑑𝑥 = (𝑑 (𝑢 + 𝑣))/𝑑𝑥 𝑑𝑦/𝑑𝑥 = 𝑑𝑢/𝑑𝑥 + 𝑑𝑣/𝑑𝑥 Calculating 𝒅𝒖/𝒅𝒙 𝑢 = 𝑥^(𝑥^2− 3) Taking log on both sides log 𝑢=log〖𝑥^(𝑥^2− 3) 〗 log 𝑢=〖(𝑥〗^2− 3). log𝑥 Differentiating 𝑤.𝑟.𝑡.𝑥. 𝑑(log𝑢 )/𝑑𝑥 = 𝑑(〖(𝑥〗^2− 3) log𝑥 )/𝑑𝑥 𝑑(log𝑢 )/𝑑𝑥 . 𝑑𝑢/𝑑𝑢 = 𝑑(〖(𝑥〗^2 − 3) log𝑥 )/𝑑𝑥 " " 𝑑(log𝑢 )/𝑑𝑢 . 𝑑𝑢/𝑑𝑥 = 𝑑(〖(𝑥〗^2− 3) log𝑥 )/𝑑𝑥 " " 1/𝑢 . 𝑑𝑢/𝑑𝑥 = 𝑑(〖(𝑥〗^2− 3) log𝑥 )/𝑑𝑥 1/𝑢 . 𝑑𝑢/𝑑𝑥 = (𝑑〖(𝑥〗^2− 3) )/𝑑𝑥 . 〖 log〗𝑥 + 𝑑(log𝑥 )/𝑑𝑥 . 〖(𝑥〗^2− 3) 1/𝑢 . 𝑑𝑢/𝑑𝑥 = (2𝑥 −0) 〖 log〗𝑥 + 1/𝑥 × 〖(𝑥〗^2− 3) 1/𝑢 . 𝑑𝑢/𝑑𝑥 = 2𝑥 . log𝑥 + (𝑥^2− 3)/𝑥 𝑑𝑢/𝑑𝑥 = u (2𝑥 "." log𝑥 "+ " (𝑥^2− 3)/𝑥) 𝒅𝒖/𝒅𝒙 = 𝒙^(𝒙^𝟐− 𝟑) (𝟐𝒙 "." 𝒍𝒐𝒈𝒙 "+ " (𝒙^𝟐− 𝟑)/𝒙) Calculating 𝒅𝒗/𝒅𝒙 𝑣 = (𝑥−3)𝑥^2 Taking log on both sides log 𝑣=log〖(𝑥−3)^(𝑥^2 ) 〗 log 𝑣=〖𝑥^2 . log〗〖 (𝑥−3)〗 Differentiating 𝑤.𝑟.𝑡.𝑥. 𝑑(log𝑣 )/𝑑𝑥 = (𝑑(〖𝑥^2. log〗〖 (𝑥 − 3)〗 ) )/𝑑𝑥 𝑑(log𝑣 )/𝑑𝑥 . 𝑑𝑣/𝑑𝑣 = (𝑑(〖𝑥^2. log〗〖 (𝑥−3)〗 ) )/𝑑𝑥 𝑑(log𝑣 )/𝑑𝑣 . 𝑑𝑣/𝑑𝑥 = (𝑑(〖𝑥^2. log〗〖 (𝑥−3)〗 ) )/𝑑𝑥 1/𝑣 . 𝑑𝑣/𝑑𝑥 = (𝑑(〖𝑥^2. log〗〖 (𝑥−3)〗 ) )/𝑑𝑥 1/𝑣 . 𝑑𝑣/𝑑𝑥 = 𝑑(𝑥^2 )/𝑑𝑥 . log (𝑥−3) + 𝑑(log" " (𝑥 − 3))/𝑑𝑥 . 𝑥^2 1/𝑣 . 𝑑𝑣/𝑑𝑥 = 2𝑥 . log (𝑥−3) + 1/((𝑥 − 3) ). (𝑑(𝑥 − 3)" " )/𝑑𝑥 . 𝑥^2 1/𝑣 . 𝑑𝑣/𝑑𝑥 = 2𝑥 . log (𝑥−3) + 1/((𝑥 − 3) ) . 𝑥^2 1/𝑣 . 𝑑𝑣/𝑑𝑥 = 2𝑥. log (𝑥−3) + 𝑥^2/(𝑥 −3) 𝑑𝑣/𝑑𝑥 = 𝑣 (2𝑥". " log" " (𝑥−3)" + " 𝑥^2/(𝑥 −3)) 𝒅𝒗/𝒅𝒙 = (𝒙−𝟑)𝒙^𝟐 (𝟐𝒙". " 𝐥𝐨𝐠" " (𝒙−𝟑)" + " 𝒙^𝟐/(𝒙 −𝟑)) Now, 𝑑𝑦/𝑑𝑥 = 𝑑𝑢/𝑑𝑥 + 𝑑𝑣/𝑑𝑥 = 𝒙^(𝒙^𝟐− 𝟑) ((𝒙^𝟐− 𝟑)/𝒙+𝟐𝒙 𝐥𝐨𝐠𝒙 ) + (𝒙−𝟑)𝒙^𝟐 (𝒙^𝟐/(𝒙 −𝟑)+𝟐𝒙 .𝐥𝐨𝐠(𝒙 −𝟑) )