Miscellaneous

Misc 1

Misc 2

Misc 3

Misc 4

Misc 5 Important

Misc 6 Important

Misc 7 Important

Misc 8

Misc 9 Important

Misc 10

Misc 11 Important

Misc 12

Misc 13 Important

Misc 14 Important

Misc 15 Important

Misc 16 Important

Misc 17 Important You are here

Misc 18

Misc 19

Misc 20

Misc 21

Misc 22 Important

Question 1 Important Deleted for CBSE Board 2024 Exams

Last updated at April 16, 2024 by Teachoo

Misc 17 If π₯=π (cosβ‘π‘ + π‘ sinβ‘π‘) and y=π (sinβ‘π‘ β π‘ cosβ‘π‘), Find (π^2 π¦)/γππ₯γ^We need to find (π^2 π¦)/γππ₯γ^2 First we find π π/π π Here, ππ¦/ππ₯ = (ππ¦/ππ‘)/(ππ₯/ππ‘) Calculating π π/π π π¦=π (sinβ‘π‘β π‘ cosβ‘π‘ ) Differentiating π€.π.π‘. t ππ¦/ππ‘ = π(π (sinβ‘π‘β π‘ cosβ‘π‘ ))/ππ‘ ππ¦/ππ‘ = π π(sinβ‘π‘β π‘ cosβ‘π‘ )/ππ‘ ππ¦/ππ‘ = π (π(sinβ‘π‘ )/ππ‘ β π(π‘ cosβ‘π‘ )/ππ‘) ππ¦/ππ‘ = π (cosβ‘π‘β π(π‘ cosβ‘π‘ )/ππ‘) ππ¦/ππ‘ = π (cosβ‘π‘ β(ππ‘/ππ‘ . cosβ‘π‘+ (π cosβ‘π‘)/ππ‘ . π‘ )) Using Product rule As (π’π£)β = π’βπ£ + π£βπ’ ππ¦/ππ‘ = π (cosβ‘π‘ β(cosβ‘π‘+(γβsinγβ‘π‘ ) . π‘)) ππ¦/ππ‘ = π (cosβ‘π‘ β(cosβ‘π‘β(sinβ‘π‘ ) . π‘)) ππ¦/ππ‘ = π (cosβ‘π‘ βcosβ‘π‘+π‘ .sinβ‘π‘ ) ππ¦/ππ‘ = π (0+π‘ sinβ‘π‘ ) π π/π π = π .π.πππβ‘π Calculating π π/π π π₯=π (cosβ‘π‘+ π‘ sinβ‘π‘ ) Differentiating π€.π.π‘. t ππ₯/ππ‘ = π(π (cosβ‘π‘ + π‘ sinβ‘π‘)" " )/ππ‘ ππ₯/ππ‘ = π (π(cosβ‘π‘ + π‘ sinβ‘π‘)/ππ‘) ππ₯/ππ‘ = π (π(cosβ‘π‘)/ππ‘ + π(π‘ sinβ‘π‘)/ππ‘) ππ₯/ππ‘ = π (γβsinγβ‘π‘ + π(π‘ sinβ‘π‘ )/ππ‘) Using product rule As (π’π£)β = π’βπ£ + π£βπ’ ππ₯/ππ‘ = π (γβsinγβ‘π‘+(ππ‘/ππ‘ . sinβ‘π‘+ π(sinβ‘π‘ )/ππ‘ . π‘ )) ππ₯/ππ‘ = π (γβsinγβ‘π‘+(sinβ‘π‘+cosβ‘π‘ . π‘)) ππ₯/ππ‘= π (βsinβ‘π‘+sinβ‘π‘+π‘ .cππ β‘π‘ ) π π/π π = π .π.πππβ‘π Finding π π/π π π π/π π = (π π/π π)/(π π/π π) ππ¦/ππ₯ = (π" " .π‘.sinβ‘π‘)/(π" " .π‘.cosβ‘π‘ ) π π/π π = πππβ‘π Again Differentiating π€.π.π‘.π₯. π /π π (π π/π π) = π (πππβ‘π)/π π (π^2 π¦)/(ππ₯^2 ) = π(tanβ‘π‘)/ππ₯ (π^2 π¦)/(ππ₯^2 ) = π(tanβ‘π‘)/ππ₯ . ππ‘/ππ‘ (π^2 π¦)/(ππ₯^2 ) =sec^2β‘π‘ . ππ‘/ππ₯ (π^2 π¦)/(ππ₯^2 ) =sec^2β‘π‘ Γ· π π/π π (π^2 π¦)/(ππ₯^2 ) = sec^2β‘π‘ Γ· π.π.ππππ (π^2 π¦)/(ππ₯^2 ) = (sec^2β‘π‘ )/(π" " . π‘.cosβ‘π‘ ) "We have calculated" π π/π π " = " π" ".π‘.πππ β‘π‘ (π^2 π¦)/(ππ₯^2 ) = (sec^2β‘π‘ )/(π" " . π‘ Γ 1/secβ‘π‘ ) (π ^π π)/(π π^π ) = (γπππγ^πβ‘π )/(π" " . π) 2