Solve all your doubts with Teachoo Black (new monthly pack available now!)

Miscellaneous

Misc 1

Misc 2

Misc 3

Misc 4

Misc 5 Important

Misc 6 Important

Misc 7 Important

Misc 8 You are here

Misc 9 Important

Misc 10

Misc 11 Important

Misc 12

Misc 13 Important

Misc 14 Important

Misc 15 Important

Misc 16 Important

Misc 17 Important

Misc 18

Misc 19 Important

Misc 20

Misc 21

Misc 22

Misc 23 Important

Chapter 5 Class 12 Continuity and Differentiability

Serial order wise

Last updated at Aug. 13, 2021 by Teachoo

Misc 8 Differentiate π€.π.π‘. π₯ the function, cos β‘(π cosβ‘π₯+π sinβ‘π₯), for some constant π and π. Let π¦ = cos β‘(π cosβ‘π₯+π sinβ‘π₯) Differentiating π€.π.π‘.π₯. ππ¦/ππ₯ = (π(cos((a cosβ‘x+b sinβ‘x )))/ππ₯ ππ¦/ππ₯ = βsinβ‘π₯ (π cosβ‘π₯+π sinβ‘π₯) . (πβ‘(π cosβ‘π₯+π sinβ‘π₯))/ππ₯ = βsinβ‘π₯ (π cosβ‘π₯+π sinβ‘π₯) . (π .πβ‘(cosβ‘π₯ )/ππ₯+π .πβ‘(sinβ‘π₯ )/ππ₯) = βsinβ‘π₯ (π cosβ‘π₯+π sinβ‘π₯) . (π(βsinβ‘π₯ )+π (cosβ‘π₯ )) = βsinβ‘π₯ (π cosβ‘π₯+π sinβ‘π₯) . (βπ sinβ‘π₯+π cosβ‘π₯ ) = βsinβ‘π₯ (π cosβ‘π₯+π sinβ‘π₯) . β(π sinβ‘π₯βπ cosβ‘π₯ ) = π¬π’π§β‘γ (π πππβ‘π+π πππβ‘π)" " (π πππβ‘πβπ πππβ‘π )γ