

Get live Maths 1-on-1 Classs - Class 6 to 12
Miscellaneous
Misc 2
Misc 3
Misc 4
Misc 5 Important
Misc 6 Important
Misc 7 Important
Misc 8
Misc 9 Important
Misc 10
Misc 11 Important
Misc 12
Misc 13 Important You are here
Misc 14 Important
Misc 15 Important
Misc 16 Important
Misc 17 Important
Misc 18
Misc 19 Important
Misc 20
Misc 21
Misc 22
Misc 23 Important
Last updated at March 22, 2023 by Teachoo
Misc 13 Find ππ¦/ππ₯ , if π¦=γπ ππγ^(βπ) π₯+γπ ππγ^(β1) β(1βπ₯2), β 1 β€ π₯ β€ 1 π¦=γπ ππγ^(βπ) π₯+γπ ππγ^(β1) β(1βπ₯^2 ) , β 1 β€ π₯ β€ 1 Putting π = πππβ‘π½ π¦=γπ ππγ^(βπ) (sinβ‘π)+γπ ππγ^(β1) β(1βsin^2 π ) π¦=π½+γπ ππγ^(β1) β(γππ¨π¬γ^π π ) π¦=π+γπ ππγ^(β1) (cos π) π¦=π+γπ ππγ^(β1) (sinβ‘(π /π βπ½) ) π¦=π+ (π/2 βπ) π¦=πβπ + π/2 π= π /π Differentiating π€.π.π‘.π₯. ππ¦/ππ₯ = π(π/2)/ππ₯ π π/π π = 0