

Get live Maths 1-on-1 Classs - Class 6 to 12
Miscellaneous
Misc 2
Misc 3 You are here
Misc 4
Misc 5 Important
Misc 6 Important
Misc 7 Important
Misc 8
Misc 9 Important
Misc 10
Misc 11 Important
Misc 12
Misc 13 Important
Misc 14 Important
Misc 15 Important
Misc 16 Important
Misc 17 Important
Misc 18
Misc 19 Important
Misc 20
Misc 21
Misc 22
Misc 23 Important
Last updated at March 30, 2023 by Teachoo
Misc 3 Differentiate 𝑤.𝑟.𝑡. 𝑥 the function, (5𝑥)^(3cos2𝑥) Let 𝑦" = " (5𝑥)^(3cos2𝑥) Taking log on both sides log𝑦 = log (5𝑥)^(3cos2𝑥) 𝒍𝒐𝒈𝒚 = 𝟑 𝐜𝐨𝐬 𝟐𝒙 . 𝒍𝒐𝒈 𝟓𝒙 Differentiating both sides 𝑤.𝑟.𝑡. x 𝑑(log𝑦 )/𝑑𝑥 = 𝑑(3 cos 2𝑥 . log 5𝑥)/𝑑𝑥 𝑑(log𝑦 )/𝑑𝑥 (𝑑𝑦/𝑑𝑦) = 𝑑(3 cos 2𝑥 . log 5𝑥)/𝑑𝑥 (As 𝑙𝑜𝑔(𝑎^𝑏) = 𝑏 𝑙𝑜𝑔𝑎) 𝑑(log𝑦 )/𝑑𝑦 (𝑑𝑦/𝑑𝑥) = 𝑑(3 cos 2𝑥 . log 5𝑥)/𝑑𝑥 𝟏/𝒚 . 𝒅𝒚/𝒅𝒙 = 𝑑(3 cos 2𝑥 . log 5𝑥)/𝑑𝑥 1/𝑦 . 𝑑𝑦/𝑑𝑥 = 𝑑(3 cos 2𝑥 )/𝑑𝑥 . log 5𝑥 + 𝑑(log 5𝑥)/𝑑𝑥 .3 cos 2𝑥 1/𝑦 . 𝑑𝑦/𝑑𝑥 = 3 𝑑(cos 2𝑥 )/𝑑𝑥 . log 5𝑥 + 1/5𝑥 . 𝑑(5𝑥)/𝑑𝑥 . 3 cos 2𝑥 1/𝑦 . 𝑑𝑦/𝑑𝑥 = 3(−sin2𝑥 ) × 2 × log 5𝑥 + 1/5𝑥 × 5 × 3 cos 2𝑥 1/𝑦 . 𝑑𝑦/𝑑𝑥 = −6 sin 2𝑥 . log5𝑥 + (3 cos2𝑥)/𝑥 Using Product rule (𝑢𝑣)’ = 𝑢’𝑣 + 𝑣’𝑢 where u = 3 𝑐𝑜𝑠 2𝑥 & 𝑣=𝑙𝑜𝑔 5𝑥 𝑑𝑦/𝑑𝑥 = 𝑦 (−6 sin 2𝑥 . log5𝑥 "+ " (3 cos2𝑥)/𝑥) 𝑑𝑦/𝑑𝑥 = (5𝑥)^(3cos2𝑥) (−6 sin 2𝑥 . log5𝑥 "+ " (3 cos2𝑥)/𝑥) 𝒅𝒚/𝒅𝒙 = (𝟓𝒙)^(𝟑𝒄𝒐𝒔𝟐𝒙) ((𝟑 𝒄𝒐𝒔𝟐𝒙)/𝒙−𝟔 𝐬𝐢𝐧 𝟐𝒙 . 𝒍𝒐𝒈𝟓𝒙 )