Miscellaneous
Misc 2
Misc 3 You are here
Misc 4
Misc 5 Important
Misc 6 Important
Misc 7 Important
Misc 8
Misc 9 Important
Misc 10
Misc 11 Important
Misc 12
Misc 13 Important
Misc 14 Important
Misc 15 Important
Misc 16 Important
Misc 17 Important
Misc 18
Misc 19
Misc 20
Misc 21
Misc 22 Important
Question 1 Important Deleted for CBSE Board 2025 Exams
Last updated at April 16, 2024 by Teachoo
Misc 3 Differentiate π€.π.π‘. π₯ the function, (5π₯)^(3cosβ‘2π₯) Let π¦" = " (5π₯)^(3cosβ‘2π₯) Taking log on both sides logβ‘π¦ = log (5π₯)^(3cosβ‘2π₯) πππβ‘π = π ππ¨π¬ ππ . πππ β‘ππ Differentiating both sides π€.π.π‘. x π(logβ‘π¦ )/ππ₯ = π(3 cos 2π₯ . log β‘5π₯)/ππ₯ π(logβ‘π¦ )/ππ₯ (ππ¦/ππ¦) = π(3 cos 2π₯ . log β‘5π₯)/ππ₯ (As πππβ‘(π^π) = π πππβ‘π) π(logβ‘π¦ )/ππ¦ (ππ¦/ππ₯) = π(3 cos 2π₯ . log β‘5π₯)/ππ₯ π/π . π π/π π = π(3 cos 2π₯ . log β‘5π₯)/ππ₯ 1/π¦ . ππ¦/ππ₯ = π(3 cos 2π₯ )/ππ₯ . log β‘5π₯ + π(log β‘5π₯)/ππ₯ .3 cos 2π₯ 1/π¦ . ππ¦/ππ₯ = 3 π(cos 2π₯ )/ππ₯ . log β‘5π₯ + 1/5π₯ . π(5π₯)/ππ₯ . 3 cos 2π₯ 1/π¦ . ππ¦/ππ₯ = 3(βsinβ‘2π₯ ) Γ 2 Γ log β‘5π₯ + 1/5π₯ Γ 5 Γ 3 cos 2π₯ 1/π¦ . ππ¦/ππ₯ = β6 sin 2π₯ . logβ‘5π₯ + (3 cosβ‘2π₯)/π₯ Using Product rule (π’π£)β = π’βπ£ + π£βπ’ where u = 3 πππ 2π₯ & π£=πππ β‘5π₯ ππ¦/ππ₯ = π¦ (β6 sin 2π₯ . logβ‘5π₯ "+ " (3 cosβ‘2π₯)/π₯) ππ¦/ππ₯ = (5π₯)^(3cosβ‘2π₯) (β6 sin 2π₯ . logβ‘5π₯ "+ " (3 cosβ‘2π₯)/π₯) π π/π π = (ππ)^(ππππβ‘ππ) ((π πππβ‘ππ)/πβπ π¬π’π§ ππ . πππβ‘ππ )