Check Full Chapter Explained - Continuity and Differentiability - Continuity and Differentiability Class 12


Last updated at Nov. 19, 2019 by Teachoo
Check Full Chapter Explained - Continuity and Differentiability - Continuity and Differentiability Class 12
Transcript
Misc 3 Differentiate π€.π.π‘. π₯ the function, (5π₯)^(3cosβ‘2π₯) Let π¦" = " (5π₯)^(3cosβ‘2π₯) Taking log on both sides logβ‘π¦ = log (5π₯)^(3cosβ‘2π₯) logβ‘π¦ = 3 cos 2π₯ . log β‘5π₯ (As πππβ‘(π^π) = π πππβ‘π) Differentiating both sides π€.π.π‘.π₯. π(logβ‘π¦ )/ππ₯ = π(3 cos 2π₯ . log β‘5π₯)/ππ₯ π(logβ‘π¦ )/ππ₯ (ππ¦/ππ¦) = π(3 cos 2π₯ . log β‘5π₯)/ππ₯ π(logβ‘π¦ )/ππ¦ (ππ¦/ππ₯) = π(3 cos 2π₯ . log β‘5π₯)/ππ₯ π(logβ‘π¦ )/ππ¦ (ππ¦/ππ₯) = π(3 cos 2π₯ . log β‘5π₯)/ππ₯ 1/π¦ . ππ¦/ππ₯ = π(3 cos 2π₯ . log β‘5π₯)/ππ₯ Using product rule 3 πππ 2π₯ . πππ β‘5π₯ As (π’π£)β = π’βπ£ + π£βπ’ where u = 3 πππ 2π₯ & π£=πππ β‘5π₯ 1/π¦ . ππ¦/ππ₯ = π(3 cos 2π₯ )/ππ₯ . log β‘5π₯ + π(log β‘5π₯)/ππ₯ .3 cos 2π₯ 1/π¦ . ππ¦/ππ₯ = 3 π(cos 2π₯ )/ππ₯ . log β‘5π₯ + 1/5π₯ . π(5π₯)/ππ₯ . 3 cos 2π₯ 1/π¦ . ππ¦/ππ₯ = 3(βsinβ‘2π₯ ) . π(2π₯)/ππ₯ . log β‘5π₯ + 1/5π₯ Γ 5 . 3 cos 2π₯ 1/π¦ . ππ¦/ππ₯ = β3 sin 2π₯ . 2 . logβ‘5π₯ + (3 cosβ‘2π₯)/π₯ 1/π¦ . ππ¦/ππ₯ = β6 sin 2π₯ . logβ‘5π₯ + (3 cosβ‘2π₯)/π₯ ππ¦/ππ₯ = π¦ (β6 sin 2π₯ . logβ‘5π₯ "+ " (3 cosβ‘2π₯)/π₯) ππ¦/ππ₯ = (5π₯)^(3cosβ‘2π₯) (β6 sin 2π₯ . logβ‘5π₯ "+ " (3 cosβ‘2π₯)/π₯) π π/π π = (ππ)^(ππππβ‘ππ) ((π πππβ‘ππ)/πβπ π¬π’π§ ππ . πππβ‘ππ )
Miscellaneous
Misc 2
Misc 3 You are here
Misc 4
Misc 5 Important
Misc 6 Important
Misc 7 Important
Misc 8
Misc 9 Important
Misc 10
Misc 11 Important
Misc 12
Misc 13 Important
Misc 14 Important
Misc 15 Important
Misc 16 Important
Misc 17 Important
Misc 18
Misc 19 Important
Misc 20
Misc 21
Misc 22
Misc 23 Important
About the Author