Misc 6 - Chapter 5 Class 12 Continuity and Differentiability
Last updated at April 16, 2024 by Teachoo
Miscellaneous
Misc 2
Misc 3
Misc 4
Misc 5 Important
Misc 6 Important You are here
Misc 7 Important
Misc 8
Misc 9 Important
Misc 10
Misc 11 Important
Misc 12
Misc 13 Important
Misc 14 Important
Misc 15 Important
Misc 16 Important
Misc 17 Important
Misc 18
Misc 19
Misc 20
Misc 21
Misc 22 Important
Question 1 Important Deleted for CBSE Board 2025 Exams
Last updated at April 16, 2024 by Teachoo
Misc 6 (Method 1) Differentiate w.r.t. x the function, γπππ‘γ^(β1 ) [(β(1 + sinβ‘π₯ ) + β(1 β sinβ‘π₯ ))/(β(1 + sinβ‘γπ₯ γ ) β β(1 βsinβ‘π₯ )) ] , 0<π₯< π/2 Let π¦= γπππ‘γ^(β1 ) [(β(1 + sinβ‘π₯ ) +β(1 β sinβ‘π₯ ))/(β(1 + sinβ‘γπ₯ γ )ββ(1 β sinβ‘π₯ )) ] Rationalizing the sum π¦= γπππ‘γ^(β1 ) [((β(1 + sinβ‘π₯ ) + β(1 β sinβ‘π₯ )))/((β(1 + sinβ‘γπ₯ γ )β β(1 β sinβ‘π₯ )) ) Γ((β(1 + sinβ‘π₯ ) + β(1 β sinβ‘π₯ )))/((β(1+sinβ‘γπ₯ γ )+ β(1 β sinβ‘π₯ )) )] π¦= γπππ‘γ^(β1 ) [(β(1 + sinβ‘π₯ ) + β(1 β sinβ‘π₯ ))^2/((β(1 + sinβ‘γπ₯ γ )β β(1 βγ sinγβ‘π₯ )) (β(1 + sinβ‘γπ₯ γ )+ β(1 βγ sinγβ‘π₯ )) ) ] = γπππ‘γ^(β1 ) [((β(1 + sinβ‘π₯ ) )^2 + (β(1 β sinβ‘π₯ ) )^2+ 2(β(1 + sinβ‘γπ₯ γ ))(β(1 βγ sinγβ‘π₯ )))/((β(1 + sinβ‘γπ₯ γ )β β(1 β γ sinγβ‘π₯ )) (β(1 + sinβ‘γπ₯ γ )+ β(1 β sinβ‘π₯ )) ) ] = γπππ‘γ^(β1 ) [((1 + sinβ‘π₯ ) + (1 β sinβ‘π₯ ) + 2β((1 + sinβ‘π₯ ) (1 β sinβ‘π₯ ) ))/((β(1 + sinβ‘γπ₯ γ ))^2 β (β(1 β sinβ‘π₯ ))^2 ) ] = γπππ‘γ^(β1 ) [(1 + sinβ‘π₯ + 1 β sinβ‘π₯ + 2β((1)^2 β sin^2β‘π₯ ))/(1 + sinβ‘π₯ β 1 + sinβ‘π₯ ) ] = γπππ‘γ^(β1 ) [(2 + 2β(1 β sin^2β‘π₯ ))/(2 sinβ‘π₯ ) ] = γπππ‘γ^(β1 ) [(2 (1 + β(π β γπππγ^πβ‘π ) ) )/(2 sinβ‘π₯ )] = γπππ‘γ^(β1 ) [(1 + β(γπππγ^πβ‘π ) )/sinβ‘π₯ ] = γπππ‘γ^(β1 ) [(1 + πππβ‘π )/πππβ‘π ] = γπππ‘γ^(β1 ) [(1 + π γπππγ^πβ‘γπ/πγ β π )/(π πππβ‘γ π/π γ γππ¨π¬ γβ‘γπ/πγ )] = γπππ‘γ^(β1 ) [(2 cos^2β‘γπ₯/2γ )/(2 sinβ‘γ π₯/2 γ γcos γβ‘γπ₯/2γ )] = γπππ‘γ^(β1 ) [(γcos γβ‘γπ₯/2γ )/sinβ‘γ π₯/2 γ ] = γπππ‘γ^(β1 ) [cotβ‘(π₯/2) ] = π₯/2 We know that sin 2ΞΈ = 2 sin ΞΈ cos ΞΈ Replacing ΞΈ by π/2 sin ΞΈ = 2 πππβ‘γπ½/πγ πππβ‘γπ½/πγ and cos 2ΞΈ = 2cos2 ΞΈ β 1 Replacing ΞΈ by π/2 cos ΞΈ = 2cos2 π½/π β 1 Thus, π= π/π Differentiating π€.π.π‘.π₯ ππ¦/ππ₯ = π/ππ₯ (π₯/2) ππ¦/ππ₯ = 1/2 ππ₯/ππ₯ π π/π π = π/π Misc 6 (Method 2) Differentiate w.r.t. x the function, γπππ‘γ^(β1 ) [(β(1 + sinβ‘π₯ ) + β(1 β sinβ‘π₯ ))/(β(1 + sinβ‘γπ₯ γ ) β β(1 β sinβ‘π₯ )) ] , 0<π₯< π/2 Let π¦= γπππ‘γ^(β1 ) [(β(1 + sinβ‘π₯ ) + β(1 β sinβ‘π₯ ))/(β(1 +γ sinγβ‘γπ₯ γ ) β β(1 β sinβ‘π₯ )) ] Finding β(π + πππβ‘π ) and β(π β πππβ‘π ) γπππγ^π π½+γπππγ^πβ‘π½=1 Replacing π by π₯/2 π ππ2 π₯/2 + γπππ γ^2 π₯/2 = 1 πππβ‘ππ½=2 π ππβ‘γπ πππ β‘π γ Replacing π by π₯/2 πππβ‘π = 2 π ππβ‘π₯/2 πππ β‘π₯/2 β("1 + sin x" ) = β((γπ ππγ^2 π₯/2 + γπππ γ^2 π₯/2)" + 2 sin " π₯/2 " cos " π₯/2) = β((πππ π₯/2 +sinβ‘γπ₯/2γ )^2 ) = πππ π/π +πππβ‘γπ/πγ β("1 " β" sin x" ) = β((γπ ππγ^2 π₯/2 + γπππ γ^2 π₯/2)" β 2 sin " π₯/2 " cos " π₯/2) = β((πππ π₯/2 βsinβ‘γπ₯/2γ )^2 ) = πππ π/π +πππβ‘γπ/πγ β("1 " β" sin x" ) = β((γπ ππγ^2 π₯/2 + γπππ γ^2 π₯/2)" β 2 sin " π₯/2 " cos " π₯/2) = β((πππ π₯/2 βsinβ‘γπ₯/2γ )^2 ) = πππ π/π +πππβ‘γπ/πγ Thus, our equation becomes y = γπππ γ^(β1) |(β(1 + sinβ‘π₯ ) + β(1 β sinβ‘π₯ ))/(β(1 + sinβ‘π₯ ) β β(1 β sinβ‘π₯ ))| Substituting value of β(1+π ππβ‘π₯ ) & β(1βπ ππβ‘π₯ ) from (1) & (2). y = cotβ1 [((γcos γβ‘γπ₯/2γ + γsin γβ‘γπ₯/2γ ) + (γcos γβ‘γπ₯/2γ β γsin γβ‘γπ₯/2γ ))/((γcos γβ‘γπ₯/2γ + γsin γβ‘γπ₯/2γ ) + (γcos γβ‘γπ₯/2γ β γsin γβ‘γπ₯/2γ ) )] π¦= γπππ‘γ^(β1 ) [(πππ β‘γ π₯/2γ + γπ ππ γβ‘γπ₯/2γ + πππ β‘γ π₯/2γ β γπ ππ γβ‘γπ₯/2γ)/(πππ β‘γ π₯/2γ + π ππβ‘γ π₯/2γ β γπππ γβ‘γπ₯/2γ β π ππβ‘γ π₯/2γ ) ] π¦= γπππ‘γ^(β1 ) [(2 γπππ γβ‘γπ₯/2γ )/(2 π ππβ‘γ π₯/2γ ) ] π¦= γπππ‘γ^(β1 ) [πππ‘ (π₯ )/2 ] π= π/π Differentiating π€.π.π‘.π₯ ππ¦/ππ₯ = π(π₯/2)/ππ₯ π π/π π = π/π