Check sibling questions

Misc  5 - Differentiate cos-1 x/2 / root (2x + 7) - Teachoo

Misc  5 - Chapter 5 Class 12 Continuity and Differentiability - Part 2
Misc  5 - Chapter 5 Class 12 Continuity and Differentiability - Part 3


Transcript

Misc 5 Differentiate 𝑤.𝑟.𝑡. 𝑥 the function, (〖𝑐𝑜𝑠〗^(−1 ) 𝑥/2)/√(2𝑥+7 ) , – 2 < 𝑥 < 2 Let 𝑦= (〖𝑐𝑜𝑠〗^(−1 ) 𝑥/2)/√(2𝑥+7 ) Differentiating both sides 𝑤.𝑟.𝑡. 𝑥 𝑑𝑦/𝑑𝑥 = 𝑑/𝑑𝑥 ((〖𝑐𝑜𝑠〗^(−1 ) 𝑥/2)/√(2𝑥+7 )) Using Quotient rule As (𝑢/𝑣)^′ = (𝑢^′ 𝑣 − 𝑣^′ 𝑢)/𝑣^2 where u = cos−1 𝑥/2 & v = √(2𝑥+7) 𝑑𝑦/𝑑𝑥 = (𝑑(〖𝑐𝑜𝑠〗^(−1 ) 𝑥/2)/𝑑𝑥 . √(2𝑥 + 7 ) − 𝑑(√(2𝑥 + 7 ))/𝑑𝑥 . 〖𝑐𝑜𝑠〗^(−1 ) 𝑥/2 )/(√(2𝑥 + 7 ))^2 𝑑𝑦/𝑑𝑥 = ((−1)/√(1 −(𝑥/2)^2 ) . 𝑑(𝑥/2)/𝑑𝑥 √(2𝑥 + 7 ) − 1/(2√(2𝑥 + 7)) . 𝑑(2𝑥 + 7)/𝑑𝑥 . 〖𝑐𝑜𝑠〗^(−1 ) 𝑥/2 )/(√(2𝑥 + 7 ))^2 𝑑𝑦/𝑑𝑥 = ((−1)/√(〖(4 − 𝑥)/4〗^2 ) . 1/2 √(2𝑥 + 7 ) − 1/(2√(2𝑥 + 7)) . (2 + 0) . 〖𝑐𝑜𝑠〗^(−1 ) 𝑥/2 )/((2𝑥 + 7) ) 𝑑𝑦/𝑑𝑥 = ((−2)/√(〖4 − 𝑥〗^2 ) . 1/2 √(2𝑥 + 7 ) − 1/(2√(2𝑥 + 7)) . 2 . 〖𝑐𝑜𝑠〗^(−1 ) 𝑥/2 )/((2𝑥 + 7) ) 𝑑𝑦/𝑑𝑥 = ((− √(𝟐𝒙 + 𝟕 ))/( √(〖𝟒 − 𝒙〗^𝟐 )) − (. 〖𝒄𝒐𝒔〗^(−𝟏 ) 𝒙/𝟐)/√(𝟐𝒙 + 𝟕) )/((2𝑥 + 7) ) 𝑑𝑦/𝑑𝑥 = (− √(2𝑥 + 7 ) ( √(2𝑥 + 7 )) − 〖𝑐𝑜𝑠〗^(−1 ) 𝑥/2 √(〖4 − 𝑥〗^2 ))/((2𝑥 + 7) (√(2𝑥 + 7 )) (√(〖4 − 𝑥〗^2 )) ) 𝑑𝑦/𝑑𝑥 = 〖−(√(2𝑥 + 7 ))〗^2/((2𝑥 + 7) ( √(2𝑥 + 7 )) (√(〖4 − 𝑥〗^2 )) ) "+ " (〖𝑐𝑜𝑠〗^(−1 ) 𝑥/2 √(〖4 − 𝑥〗^2 ))/((2𝑥 + 7) ( √(2𝑥 + 7 )) (√(〖4 − 𝑥〗^2 )) ) 𝑑𝑦/𝑑𝑥 = (−(2𝑥 + 7))/((2𝑥 + 7) √(2𝑥 + 7 ) √(〖4 − 𝑥〗^2 )) "+ " (〖𝑐𝑜𝑠〗^(−1 ) 𝑥/2 )/((2𝑥 + 7) √(2𝑥 + 7 ) ) 𝑑𝑦/𝑑𝑥 = (−1)/(√(2𝑥 + 7 ) √(〖4 − 𝑥〗^2 )) "+ " (〖𝑐𝑜𝑠〗^(−1 ) 𝑥/2 )/((2𝑥 + 7) (2𝑥 + 7)^(1/2) ) 𝒅𝒚/𝒅𝒙 = (−𝟏)/(√(𝟐𝒙 + 𝟕) √(〖𝟒 − 𝒙〗^𝟐 ))−(〖𝒄𝒐𝒔〗^(−𝟏 ) 𝒙/𝟐 )/((𝟐𝒙 + 𝟕)^(𝟑/𝟐) )

Davneet Singh's photo - Teacher, Engineer, Marketer

Made by

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 12 years. He provides courses for Maths and Science at Teachoo.