Check sibling questions

Misc 9 - Differentiate (sin x - cos x)^*(sin x - cos x) - Chapter 5

Misc  9 - Chapter 5 Class 12 Continuity and Differentiability - Part 2
Misc  9 - Chapter 5 Class 12 Continuity and Differentiability - Part 3

Get live Maths 1-on-1 Classs - Class 6 to 12


Transcript

Misc 9 Differentiate w.r.t. x the function, (sin⁡𝑥−cos⁡𝑥 )^((sin⁡〖𝑥−cos⁡〖𝑥)〗 〗 ), 𝜋/4 <𝑥< 3𝜋/4 Let y = (sin⁡𝑥−cos⁡𝑥 )^((sin⁡〖𝑥−cos⁡〖𝑥)〗 〗 ) Taking log on both sides log⁡𝑦 = log (sin⁡𝑥−cos⁡𝑥 )^((sin⁡〖𝑥−cos⁡〖𝑥)〗 〗 ) log⁡𝑦 = (sin⁡𝑥−cos⁡𝑥 ). 〖 log〗⁡〖 (sin⁡𝑥−cos⁡𝑥 )〗 Differentiating both sides 𝑤.𝑟.𝑡.𝑥. 𝑑(log⁡𝑦 )/𝑑𝑥 = 𝑑((sin⁡𝑥 − cos⁡𝑥 ). 〖 log〗⁡(sin⁡𝑥 − cos⁡𝑥 ) )/𝑑𝑥 𝑑(log⁡𝑦 )/𝑑𝑥 (𝑑𝑦/𝑑𝑦) = 𝑑((sin⁡𝑥−cos⁡𝑥 ). 〖 log〗⁡〖 (sin⁡𝑥−cos⁡𝑥 )〗 )/𝑑𝑥 𝑑(log⁡𝑦 )/𝑑𝑦 (𝑑𝑦/𝑑𝑥) = 𝑑((sin⁡𝑥−cos⁡𝑥 ). 〖 log〗⁡〖 (sin⁡𝑥−cos⁡𝑥 )〗 )/𝑑𝑥 1/𝑦 . 𝑑𝑦/𝑑𝑥 = 𝑑((sin⁡𝑥−cos⁡𝑥 ). 〖 log〗⁡〖 (sin⁡𝑥−cos⁡𝑥 )〗 " " )/𝑑𝑥 " " 1/𝑦. 𝑑𝑦/𝑑𝑥 = 𝑑(sin⁡𝑥 − cos⁡𝑥 )/𝑑𝑥 . 〖 log 〗⁡(sin⁡𝑥−cos⁡𝑥 ) + 𝑑(〖 log〗⁡〖 (sin⁡𝑥 − cos⁡𝑥 )〗 )/𝑑𝑥 .(sin⁡𝑥−cos⁡𝑥 ) 1/𝑦 . 𝑑𝑦/𝑑𝑥 = (cos⁡𝑥−(−sin⁡𝑥 )). log⁡〖 (sin⁡𝑥−〖 cos〗⁡𝑥 )〗 + 1/((sin⁡𝑥 − cos⁡𝑥 ) ) . 𝑑(sin⁡𝑥 − cos⁡𝑥 )/𝑑𝑥 . (sin⁡𝑥−〖 cos〗⁡𝑥 ) 1/𝑦 . 𝑑𝑦/𝑑𝑥 = (cos⁡𝑥+sin⁡𝑥 ) . log⁡〖 (sin⁡𝑥−cos⁡𝑥 )〗 + 1/((sin⁡𝑥−cos⁡𝑥 ) ) . (cos⁡𝑥−(−sin⁡𝑥 )) . (sin⁡𝑥−cos⁡𝑥 ) Using product rule (𝑢𝑣)’ = 𝑢’𝑣 + 𝑣’𝑢 where u = sin x − cos x & v = log (sin x − cos x) 1/𝑦 . 𝑑𝑦/𝑑𝑥 = (cos⁡𝑥+sin⁡𝑥 ) . log⁡〖 (sin⁡𝑥−cos⁡𝑥 )〗 + 1/((sin⁡𝑥−cos⁡𝑥 ) ) . (cos⁡𝑥+sin⁡𝑥 ) . (sin⁡𝑥−cos⁡𝑥 ) 1/𝑦 . 𝑑𝑦/𝑑𝑥 = (cos⁡𝑥+sin⁡𝑥 ) . log⁡〖 (sin⁡𝑥−cos⁡𝑥 )〗 + (cos⁡𝑥+sin⁡𝑥 ) 1/𝑦 . 𝑑𝑦/𝑑𝑥 = (cos⁡𝑥+sin⁡𝑥 ) . (log⁡〖 (sin⁡𝑥−cos⁡𝑥 )+1〗 ) 𝑑𝑦/𝑑𝑥 = 𝑦(cos⁡𝑥+sin⁡𝑥 ) . (log⁡〖 (sin⁡𝑥−cos⁡𝑥 )+1〗 ) 𝒅𝒚/𝒅𝒙 = (𝒔𝒊𝒏⁡𝒙−𝒄𝒐𝒔⁡𝒙 )^((𝒔𝒊𝒏⁡〖𝒙−𝒄𝒐𝒔⁡〖𝒙)〗 〗 ) (𝒄𝒐𝒔⁡𝒙+𝒔𝒊𝒏⁡𝒙 )(𝒍𝒐𝒈⁡〖 (𝒔𝒊𝒏⁡𝒙−𝒄𝒐𝒔⁡𝒙 )+𝟏〗 )

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.