Check Full Chapter Explained - Continuity and Differentiability - Continuity and Differentiability Class 12


Last updated at May 29, 2018 by Teachoo
Check Full Chapter Explained - Continuity and Differentiability - Continuity and Differentiability Class 12
Transcript
Misc 20 Using the fact that sin ( + )=sin cos +cos sin and the differentiation, obtain the sum formula for cosines. Given sin ( + )=sin cos +cos sin Consider A & B are function of Differentiating both side . . . . sin + = sin cos + cos sin sin + = sin . cos + cos . sin cos + . + = sin . cos + cos . sin cos + . + = sin . cos + cos A + cos . + sin . os A = cos . . cos B sin . sin sin . . sin + cos . . os A = cos . . cos B sin . B sin . . + cos B . . os A = cos cos sin sin + sin sin + cos cos = cos cos sin sin + Thus, cos + . + = cos cos sin sin + cos + . + + = cos cos sin sin cos + = cos cos + sin sin Hence proved
Miscellaneous
Misc 2
Misc 3
Misc 4
Misc 5 Important
Misc 6 Important
Misc 7 Important
Misc 8
Misc 9 Important
Misc 10
Misc 11 Important
Misc 12
Misc 13 Important
Misc 14 Important
Misc 15 Important
Misc 16 Important
Misc 17 Important
Misc 18
Misc 19 Important
Misc 20 You are here
Misc 21
Misc 22
Misc 23 Important
About the Author