Miscellaneous

Misc 1

Misc 2

Misc 3

Misc 4

Misc 5 Important

Misc 6 Important

Misc 7 Important

Misc 8

Misc 9 Important

Misc 10

Misc 11 Important

Misc 12

Misc 13 Important

Misc 14 Important

Misc 15 Important

Misc 16 Important

Misc 17 Important

Misc 18

Misc 19 You are here

Misc 20

Misc 21

Misc 22 Important

Question 1 Important Deleted for CBSE Board 2025 Exams

Last updated at April 16, 2024 by Teachoo

Misc 19 Using the fact that sinβ‘(π΄ + π΅)=sinβ‘π΄ cosβ‘π΅+cosβ‘π΄ sinβ‘π΅ and the differentiation, obtain the sum formula for cosines.Given sinβ‘(π΄ + π΅)=sinβ‘π΄ cosβ‘π΅+cosβ‘π΄ sinβ‘π΅ Consider A & B are function of π₯ Differentiating both side π€.π.π‘.π₯. π(sinβ‘(π΄ + π΅) )/ππ₯ = π(sinβ‘π΄ cosβ‘π΅ + cosβ‘π΄ sinβ‘π΅)/ππ₯ π(sinβ‘(π΄ + π΅) )/ππ₯ = π(sinβ‘π΄ . cosβ‘π΅)/ππ₯ + π(cosβ‘γπ΄ γ. sinβ‘π΅)/ππ₯ cos (π΄+π΅) . π(π΄ + π΅)/ππ₯ = π(sinβ‘π΄ . cosβ‘π΅)/ππ₯ + π(cosβ‘γπ΄ γ. sinβ‘π΅)/ππ₯ πππ (π¨+π©) . (π π¨/π π + π π©/π π) = (π(sinβ‘π΄ )/ππ₯. cosβ‘π΅" +" π(cosβ‘π΅ )/ππ₯ " " π ππβ‘"A" ) + (π(cosβ‘π΄ )/ππ₯. π ππβ‘π΅" +" π(sinβ‘π΅ )/ππ₯ ". " π"os A" ) = cosβ‘π΄.ππ΄/ππ₯ ". cos B "βsinβ‘π΅.ππ΅/ππ₯ " " sinβ‘π΄ β sinβ‘π΄. ππ΄/ππ₯.sinβ‘π΅+cosβ‘π΅. ππ΅/ππ₯ ". " π"os A" = cosβ‘π΄.ππ΄/ππ₯ ". cos B "βsinβ‘π΄ .ππ΄/ππ₯ " " π ππβ‘"B" β sinβ‘π΅. ππ΅/ππ₯. π ππ π΄β‘"+ cos B" . ππ΅/ππ₯ ". " π"os A" = ππ΄/ππ₯ (cosβ‘π΄ cosβ‘π΅βsinβ‘π΄ sinβ‘π΅ ) + ππ΅/ππ₯ (βsinβ‘π΅ sinβ‘π΄+cosβ‘π΅ cosβ‘π΄ ) = (cosβ‘π΄ cosβ‘π΅βsinβ‘π΄ sinβ‘π΅ ) (ππ΄/ππ₯ + ππ΅/ππ₯) Thus, cos (π΄+π΅) . (ππ΄/ππ₯ + ππ΅/ππ₯) = (cosβ‘π΄ cosβ‘π΅βsinβ‘π΄ sinβ‘π΅ ) (ππ΄/ππ₯ + ππ΅/ππ₯) πππ" " (π¨+π©) = πππβ‘π¨ πππβ‘π©βπππβ‘π¨ πππβ‘π© Hence proved