Misc 13 - Find dy/dx, if y = sin-1 x + sin-1 root 1-x2 - Miscellaneous - Miscellaneous

part 2 - Misc  13 - Miscellaneous - Serial order wise - Chapter 5 Class 12 Continuity and Differentiability

Share on WhatsApp

Transcript

Misc 13 Find 𝑑𝑦/𝑑π‘₯ , if 𝑦=〖𝑠𝑖𝑛〗^(βˆ’πŸ) π‘₯+〖𝑠𝑖𝑛〗^(βˆ’1) √(1βˆ’π‘₯2), – 1 ≀ π‘₯ ≀ 1 𝑦=〖𝑠𝑖𝑛〗^(βˆ’πŸ) π‘₯+〖𝑠𝑖𝑛〗^(βˆ’1) √(1βˆ’π‘₯^2 ) , – 1 ≀ π‘₯ ≀ 1 Putting 𝒙 = π’”π’Šπ’β‘πœ½ 𝑦=〖𝑠𝑖𝑛〗^(βˆ’πŸ) (sinβ‘πœƒ)+〖𝑠𝑖𝑛〗^(βˆ’1) √(1βˆ’sin^2 πœƒ ) 𝑦=𝜽+〖𝑠𝑖𝑛〗^(βˆ’1) √(γ€–πœπ¨π¬γ€—^𝟐 πœƒ ) 𝑦=πœƒ+〖𝑠𝑖𝑛〗^(βˆ’1) (cos πœƒ) 𝑦=πœƒ+〖𝑠𝑖𝑛〗^(βˆ’1) (sin⁑(𝝅/𝟐 βˆ’πœ½) ) 𝑦=πœƒ+ (πœ‹/2 βˆ’πœƒ) 𝑦=πœƒβˆ’πœƒ + πœ‹/2 π’š= 𝝅/𝟐 Differentiating 𝑀.π‘Ÿ.𝑑.π‘₯. 𝑑𝑦/𝑑π‘₯ = 𝑑(πœ‹/2)/𝑑π‘₯ π’…π’š/𝒅𝒙 = 0

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo