ย  ย  Misc 10 - Differentiate xx + xa + ax + aa - Class 12 NCERT - Miscellaneous

part 2 - Misc  10 - Miscellaneous - Serial order wise - Chapter 5 Class 12 Continuity and Differentiability
part 3 - Misc  10 - Miscellaneous - Serial order wise - Chapter 5 Class 12 Continuity and Differentiability
part 4 - Misc  10 - Miscellaneous - Serial order wise - Chapter 5 Class 12 Continuity and Differentiability
part 5 - Misc  10 - Miscellaneous - Serial order wise - Chapter 5 Class 12 Continuity and Differentiability

Share on WhatsApp

Transcript

Misc 10 Differentiate w.r.t. x the function, ๐‘ฅ๐‘ฅ + ๐‘ฅ๐‘Ž + ๐‘Ž^๐‘ฅ+ ๐‘Ž๐‘Ž, for some fixed ๐‘Ž >0 and ๐‘ฅ> 0Let ๐‘ฆ= ๐‘ฅ๐‘ฅ + ๐‘ฅ๐‘Ž + ๐‘Ž^๐‘ฅ+ ๐‘Ž๐‘Ž And let u=๐‘ฅ๐‘ฅ , ๐‘ฃ=๐‘ฅ๐‘Ž , ๐‘ค=๐‘Ž^๐‘ฅ Now, ๐’š=๐’–+๐’—+๐’˜+๐’‚๐’‚ Differentiating both sides ๐‘ค.๐‘Ÿ.๐‘ก.๐‘ฅ. ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ๐‘‘(๐‘ข + ๐‘ฃ + ๐‘ค + ๐‘Ž๐‘Ž)/๐‘‘๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ๐‘‘(๐‘ข)/๐‘‘๐‘ฅ +๐‘‘(๐‘ฃ)/๐‘‘๐‘ฅ+๐‘‘(๐‘ค)/๐‘‘๐‘ฅ + ๐‘‘(๐‘Ž๐‘Ž)/๐‘‘๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ๐‘‘๐‘ข/๐‘‘๐‘ฅ +๐‘‘๐‘ฃ/๐‘‘๐‘ฅ+๐‘‘๐‘ค/๐‘‘๐‘ฅ + 0 ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ๐‘‘๐‘ข/๐‘‘๐‘ฅ + ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ + ๐‘‘๐‘ค/๐‘‘๐‘ฅ Calculating ๐’…๐’–/๐’…๐’™ ๐‘ข =๐‘ฅ^๐‘ฅ Taking log on both sides logโก๐‘ข=logโกใ€–๐‘ฅ^๐‘ฅ ใ€— logโก๐‘ข=๐‘ฅ .logโก๐‘ฅ (๐‘Ž^๐‘Ž ๐‘–๐‘  ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก) Differentiating both sides ๐‘ค.๐‘Ÿ.๐‘ก.๐‘ฅ. ๐‘‘(logโก๐‘ข )/๐‘‘๐‘ฅ = ๐‘‘(๐‘ฅ .ใ€– logใ€—โก๐‘ฅ )/๐‘‘๐‘ฅ ๐‘‘(logโก๐‘ข )/๐‘‘๐‘ฅ . ๐‘‘๐‘ข/๐‘‘๐‘ข = ๐‘‘(๐‘ฅ .ใ€– logใ€—โก๐‘ฅ )/๐‘‘๐‘ฅ ๐‘‘(logโก๐‘ข )/๐‘‘๐‘ข . ๐‘‘๐‘ข/๐‘‘๐‘ฅ = ๐‘‘๐‘ฅ/๐‘‘๐‘ฅ . logโก๐‘ฅ + (๐‘‘(ใ€– logใ€—โก๐‘ฅ))/๐‘‘๐‘ฅ. ๐‘ฅ 1/๐‘ข . ๐‘‘๐‘ข/๐‘‘๐‘ฅ = logโก๐‘ฅ + 1/๐‘ฅ . ๐‘ฅ 1/๐‘ข . ๐‘‘๐‘ข/๐‘‘๐‘ฅ = logโก๐‘ฅ + 1 ๐‘‘๐‘ข/๐‘‘๐‘ฅ = u (1+ log ๐‘ฅ)โก ๐’…๐’–/๐’…๐’™ = ๐’™^๐’™ (๐Ÿ+ ๐’๐’๐’ˆ ๐’™)โก Calculating ๐’…๐’—/๐’…๐’™ ๐‘ฃ=๐‘ฅ^๐‘Ž Differentiating both sides ๐‘ค.๐‘Ÿ.๐‘ก.๐‘ฅ. ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ= ๐‘‘(๐‘ฅ^๐‘Ž )/๐‘‘๐‘ฅ ๐’…๐’—/๐’…๐’™= ๐’‚๐’™^(๐’‚ โˆ’๐Ÿ) Calculating ๐’…๐’˜/๐’…๐’™ ๐‘ค=๐‘Ž^๐‘ฅ Differentiating both sides ๐‘ค.๐‘Ÿ.๐‘ก.๐‘ฅ. ๐‘‘๐‘ค/๐‘‘๐‘ฅ = ๐‘‘(๐‘Ž^๐‘ฅ )/๐‘‘๐‘ฅ ๐‘‘๐‘ค/๐‘‘๐‘ฅ = ๐‘Ž^๐‘ฅ .logโก๐‘Ž Therefore, ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ๐‘‘๐‘ข/๐‘‘๐‘ฅ + ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ + ๐‘‘๐‘ค/๐‘‘๐‘ฅ = ๐’™^๐’™ (๐Ÿ+ ๐’๐’๐’ˆ ๐’™) + ๐’‚๐’™^(๐’‚ โˆ’๐Ÿ) + ๐’‚^๐’™ .๐’๐’๐’ˆโก๐’‚

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo