


Get live Maths 1-on-1 Classs - Class 6 to 12
Examples
Example 2
Example 3
Example 4
Example 5 Important
Example 6
Example 7 Important
Example 8
Example 9 Important
Example 10
Example 11 Important
Example 12 Important
Example 13 Important
Example 14 Important
Example 15 Important
Example 16
Example 17 Important
Example 18 Important
Example 19 Important
Example 20 Important
Example 21 Important
Example 22
Example 23
Example 24 Important
Example 25 Important
Example 26 Important
Example 27
Example 28 Important Deleted for CBSE Board 2023 Exams
Example 29 Important
Example 30 Important Deleted for CBSE Board 2023 Exams
Example 31 Important Deleted for CBSE Board 2023 Exams
Example 32 Important Deleted for CBSE Board 2023 Exams
Example 33 Important
Example 34 Deleted for CBSE Board 2023 Exams
Example 35
Example 36 Important You are here
Example 37 Important
Last updated at March 16, 2023 by Teachoo
Example 36 A and B throw a die alternatively till one of them gets a ‘6’ and wins the game. Find their respective probabilities of winning, if A starts first. Winning the game is getting a 6 on the die P(getting 6) = 1/6 P(not getting six) = 1 – P(getting six) = 1 – 1/6 = 5/6 1st throw by A: A gets a six P(A wins) = 1/6 2nd throw by B: A does not get 6, B gets six So, P(B wins) = 5/6 × 1/6 3rd throw by A: A does not get 6, B does not get 6, A gets six P(A wins) = 5/6 × 5/6 × 1/6 4th throw by B: A does not get 6, B does not get 6, A does not get 6, B gets six P(B wins) = 5/6 × 5/6 × 5/6 × 1/6 5th throw by A: A does not get 6, B does not get 6, A does not get 6, B does not get 6, A gets six P(A wins) = 5/6 × 5/6 × 5/6 × 5/6 × 1/6 and so on So, probability that A wins is P(A wins) = 1/6 + 5/6 × 5/6 × 1/6 + 5/6 × 5/6 × 5/6 × 5/6 × 1/6 + ……. = (1/6) + (5/6)^2 (1/6) + (5/6)^4 (1/6) + ............ Sum of infinite GP : a, ar , ar2, …….. a + ar + ar2 + ……… = 𝑎/(1 − 𝑟) Here, a = 1/6 , r = (5/6)^2 = (1/6)/(1 − (5/6)^2 ) = (1/6)/(1 − 25/36) = (1/6)/((36 − 25)/36) = (1/6)/(11/36) = 6/11 ∴ P(A wins) = 𝟔/𝟏𝟏 and P(B wins) = 1 – P(A wins) = 1 – 6/11 = 𝟓/𝟏𝟏