Example 21 - Chapter 13 Class 12 Probability
Last updated at April 16, 2024 by Teachoo
Examples
Example 2
Example 3
Example 4
Example 5 Important
Example 6
Example 7 Important
Example 8
Example 9 Important
Example 10
Example 11 Important
Example 12 Important
Example 13 Important
Example 14 Important
Example 15 Important
Example 16
Example 17 Important
Example 18 Important
Example 19 Important
Example 20 Important
Example 21 Important You are here
Example 22 Important
Example 23 Important
Example 24 Important
Question 1 Deleted for CBSE Board 2025 Exams
Question 2 Deleted for CBSE Board 2025 Exams
Question 3 Important Deleted for CBSE Board 2025 Exams
Question 4 Important Deleted for CBSE Board 2025 Exams
Question 5 Important Deleted for CBSE Board 2025 Exams
Question 6 Deleted for CBSE Board 2025 Exams
Question 7 Important Deleted for CBSE Board 2025 Exams
Question 8 Important Deleted for CBSE Board 2025 Exams
Question 9 Important Deleted for CBSE Board 2025 Exams
Question 10 Important Deleted for CBSE Board 2025 Exams
Question 11 Important Deleted for CBSE Board 2025 Exams
Question 12 Deleted for CBSE Board 2025 Exams
Question 13 Deleted for CBSE Board 2025 Exams
Last updated at April 16, 2024 by Teachoo
Example 21 A man is known to speak truth 3 out of 4 times. He throws a die and reports that it is a six. Find the probability that it is actually a six.Let S1 : man speaks the truth S2 : man lies E : six on the die We need to find the Probability that it is actually a six, if the man reports that it a six i.e. P(S1|E) P(S1|E) = (𝑃(𝑆_1 ).𝑃(𝐸|𝑆_1))/(𝑃(𝑆_1 ).𝑃(𝐸|𝑆_1)+𝑃(𝑆_2 ).𝑃(𝐸|𝑆_2)) P(S1) = Probability that man speaks truth = 𝟑/𝟒 P(E|S1) = Probability that six appears on the die, if the man speaks the truth = 𝟏/𝟔 P(S2) = Probability man lies = 1 – P(E) = 1 – 3/4 = 𝟏/𝟒 P(E|S2) = Probability that six appears on the die, if the man lies = P(6 does not appear) = 1 – 1/6 = 𝟓/𝟔 Putting value in formula, P(S1|E) = (𝑃(𝑆_1 ).𝑃(𝐸|𝑆_1))/(𝑃(𝑆_1 ).𝑃(𝐸|𝑆_1)+𝑃(𝑆_2 ).𝑃(𝐸|𝑆_2)) = (𝟑/𝟒 × 𝟏/𝟔)/( 𝟑/𝟒 × 𝟏/𝟔 + 𝟏/𝟒 × 𝟓/𝟔 ) = (1/4 × 1/6 × 3)/( 1/4 × 1/6 [3 + 5] ) = 3/8 Therefore, required probability is 𝟑/𝟖