

Get live Maths 1-on-1 Classs - Class 6 to 12
Examples
Example 2
Example 3
Example 4
Example 5 Important
Example 6
Example 7 Important
Example 8
Example 9 Important
Example 10
Example 11 Important
Example 12 Important
Example 13 Important
Example 14 Important
Example 15 Important
Example 16
Example 17 Important
Example 18 Important
Example 19 Important
Example 20 Important
Example 21 Important
Example 22
Example 23
Example 24 Important
Example 25 Important
Example 26 Important
Example 27
Example 28 Important Deleted for CBSE Board 2023 Exams
Example 29 Important
Example 30 Important Deleted for CBSE Board 2023 Exams
Example 31 Important Deleted for CBSE Board 2023 Exams
Example 32 Important Deleted for CBSE Board 2023 Exams
Example 33 Important
Example 34 Deleted for CBSE Board 2023 Exams
Example 35 You are here
Example 36 Important
Example 37 Important
Last updated at March 16, 2023 by Teachoo
Example 35 The probability of a shooter hitting a target is 3/4 . How many minimum number of times must he/she fire so that the probability of hitting the target at least once is more than 0.99?Let X : Number of times he hits the target Hitting the target is a Bernoulli trial So, X has a binomial distribution P(X = x) = nCx 𝒒^(𝒏−𝒙) 𝒑^𝒙 Here, n = number of rounds fired p = Probability of hitting = 3/4 q = 1 – p = 1 − 3/4 = 1/4 Hence, P(X = x) = nCx (𝟑/𝟒)^𝒙 (𝟏/𝟒)^(𝒏−𝒙) We need to find How many minimum number of times must he/she fire so that the probability of hitting the target at least once is more than 0.99 So, given P(X ≥ 1) > 99%, we need to find n Now, P(X ≥ 1) > 99 % 1 − P(X = 0) > 99 % ` 1 − nC0(3/4)^0 (1/4)^𝑛> 0.99 1 − (1/4)^𝑛 > 0.99 1 − 0.99 > (1/4)^𝑛 0.01 > 1/4^𝑛 4^𝑛 > 1/0.01 𝟒^𝒏 > 𝟏𝟎𝟎 We know that 44 = 256 So, n ≥ 4 So, the minimum value of n is 4 So, he must fire atleast 4 times `